Effect of the magnetic moment of a charged particle on its energy loss in optically active materials

V. A. Onishchuk

Institute of Chemical Physics, USSR Academy of Sciences

(Submitted 10 October 1980; resubmitted 2 February 1981)

Asymmetry in the energy loss of longitudinally polarized fast charged particles in optically active antipodes (enantiomers) is demonstrated in the framework of classical electrodynamics. For ultrarelativistic electrons and positrons the degree of asymmetry turns out to be of order a^2, and for relativistic electrons and positrons, of order a^4/c^2, where $a \approx 1/137$ is the fine-structure constant.

PACS numbers: 41.10. - j, 61.80.Mk

1. Recently Zel'dovich and Saakyan evaluated the degree of asymmetry of the cross section for decay of the L and D forms of optically active molecules on interaction with longitudinally polarized fast electrons. This problem is of immediate interest in connection with attempts to explain the asymmetry which exists in nature between right-handed and left-handed forms of molecules. References on this question are contained in the paper cited, in which the dependence of the decay cross section on the helicity of the electrons was determined in the framework of quantum electrodynamics in the first order of perturbation theory. A degree of asymmetry of the order $a^2/v/c$ was predicted, where v is the electron velocity and a is the fine-structure constant.

In the present work we also consider the asymmetry in the interaction of longitudinally polarized fast charged particles (it is assumed that the particle has a magnetic moment) with optically active antipodes, but this time in the framework of classical electrodynamics.

We have calculated the magnetic-moment-dependent part of the retarding force exerted on the particle by the medium and have found the degree of asymmetry η of the energy loss of the particle in the L and D forms of the material. For ultrarelativistic electrons and positrons the value of η turns out to be $-a^2$.

The nature of the origin of the effect is as follows. In the Coulomb excitation of the molecules of the medium by a passing charged particle, the electrons in the molecules begin to move along helices with opposite sense for L and D forms. As a result a circular motion appears around the particle and a magnetic field is produced by this particle is described by the Maxwell equations:

$$\mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} - \frac{\mathbf{j}}{\varepsilon_0} \quad \mathbf{B} = \mu_0 \mathbf{j} + \frac{\mathbf{E} \times \mathbf{B}}{\gamma m}.$$

To find the dependence of \mathbf{E} on \mathbf{B}, it is necessary to introduce the magnetic moment into the Maxwell equations.

2. Consider a charged particle having a magnetic moment μ and moving in a medium with velocity \mathbf{v}. The field produced by this particle is described by the Maxwell equations:

$$\mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} - \frac{\mathbf{j}}{\varepsilon_0}. \quad \mathbf{B} = \mu_0 \mathbf{j} + \frac{\mathbf{E} \times \mathbf{B}}{\gamma m},$$

where \mathbf{E} and \mathbf{B} are scalars and γ is a pseudoscalar associated with the optical activity ($\mu = \mu_0 \gamma^2 a^2$). These terms also should contribute to the degree of asymmetry of the energy loss.

To find the dependence of \mathbf{E} on \mathbf{B}, we shall make use of the fact that the quantity $(\mathbf{E} \cdot \mathbf{B})$ is a 4-vector. In the system of the moving particle the field is described by the potentials

$$\mathbf{A}' = \gamma \mathbf{A} - \mathbf{v}, \quad \mathbf{A}' = \gamma \mathbf{A} - \mathbf{v},$$

which correspond to the densities

$$\rho' = \frac{1}{4\pi} \delta (\mathbf{r}' - \mathbf{r}(\mathbf{R})), \quad j' = \frac{1}{4\pi} \delta (\mathbf{r}' - \mathbf{r}(\mathbf{R})).$$

Transforming to the coordinate system attached to the medium, we obtain

$$25 \quad \text{Sov. Phys. JETP 54(4), July 1981} \quad 0038-6646/81/070005-02$02.40 © 1982 American Institute of Physics
The retarding force exerted by an isotropic optically active medium on a charged particle moving in it is (\(\xi\))

\[
F = e\gamma V(\xi)B.
\]

Carrying out a three-dimensional Fourier transformation in this expression and using the equation

\[
m\mathbf{E} = -i \mathbf{H},
\]

we obtain (1)

\[
F_{\xi}(k,l) = e\mathbf{F}(k,l) = i \frac{1}{2} \sum_{\delta} \mathbf{F}(k,l) \mathbf{F}(k,l)^*.
\]

The quantities \(E_\xi\), entering here can be found by transforming to the three-dimensional Fourier components in Eq. (1) and solving the system of equations

\[
T_\xi = \epsilon(k,l) \tau_\xi(k,l) = i \frac{1}{2} \sum_{\delta} \tau_\xi(k,l) \tau_\xi(k,l)^*.
\]

where for the isotropic gyrotropic medium considered we have

\[
\tau_\xi(k,l) = i \chi \epsilon(k,l) \epsilon(k,l)^*.
\]

Here \(\epsilon(k,l)\) is the rotational strength for the transition \(0 \rightarrow \nu\). The quantity \(\epsilon(k,l)\) changes sign in the transition from the \(L\) form to the \(D\) form of the material.

Solving the system (6), substituting the values of \(E_\xi\) into Eq. (5), and carrying out the inverse Fourier transformation for \(\xi = \xi, \eta, \zeta\), we obtain

\[
F_{\xi} = -i \frac{e\gamma}{c} \int \frac{d^3k}{(2\pi)^3} \epsilon(k,l) \tau_\xi(k,l) \mathbf{F}(k,l) \mathbf{F}(k,l)^*.
\]

where the term proportional to \(\gamma\) is due to the dependence of the field \(\mathbf{E}\) on \(\mathbf{u}\). In this expression the first integral describes the ordinary ionization loss and a method of calculating it is given in the book by Landau and Lifshitz; the second term is the effect of the magnetic moment of the particle on the energy loss. Calculation of the second integral can be carried out like that of the first, with the only difference that the integrand of the second integral as a function of \(\omega\) has a second-order pole in the upper half plane, while the first integral has a simple pole.

The final expression for the \(\mu\)-dependent part of the retarding force has the form

\[
F_{\mu} = e\gamma \left[\frac{1}{c} \int \frac{d^3k}{(2\pi)^3} \epsilon(k,l) \tau_\xi(k,l) \mathbf{F}(k,l) \mathbf{F}(k,l)^* \right] \mu_{\xi}(\mathbf{u})
\]

\[
- \frac{1}{c} \sum_{m=1}^{\infty} \frac{(\mu_{\xi}(\mathbf{u}))^m}{m!}.
\]

where \(\mu_{\xi}(\mathbf{u})\) is the imaginary part of the square root of the equation

\[
\omega^2(\epsilon(k,l)) = \mu_{\xi}(\mathbf{u})
\]

and \(\xi = 1/\alpha\), where \(\alpha\) is the distance between the atoms (ions) of the medium.

For fast particles we have

\[
\gamma = \frac{1}{2\pi} \sum_{m=1}^{\infty} \frac{(\xi_{\xi}(\mathbf{u}))^m}{m!}.
\]

Both for \(\xi^2 < \xi(0)\) and for \(\xi^2 > \xi(0)\)—the ultrarelativistic case—the logarithm in Eq. (10) turns out to be identical with the logarithm arising in calculation of the ordinary ionization loss, and drops out in the estimate of the degree of asymmetry. As a result for electrons and positrons we obtain at \(\xi^2 > \xi(0)\)

\[
\eta = \frac{1}{c^2} \sum_{m=1}^{\infty} \frac{(\xi_{\xi}(\mathbf{u}))^m}{m!} \mu_{\xi}(\mathbf{u}) = \frac{1}{c^2} \eta(0).
\]

Thus, the asymmetry in the energy loss of ultrarelativistic electrons in optically active antipodes as a function of the polarization of the particles should be of the order \(\alpha^4\).

1In what follows we shall omit the arguments in the Fourier components.

4L. D. Landau and E. M. Lifshitz, Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow, Fizmatgiz, 1959, Section 85 [Pergamon 1960].

Translated by Clark S. Robinson
The magnetic moment was first defined for macroscopic classical magnets and is the first dipole term in an expansion of the magnetic field, whether it is a permanent magnet or moving charges creating a magnetic field. More precisely, the term magnetic moment normally refers to a system's magnetic dipole moment, which produces the first term in the multipole expansion of a general magnetic field. In classical electrodynamics it is defined as a higher order correction will introduce other terms of charged exchanged particles which may give rise to a magnetic moment but will be very small, due to the smallness of the weak interaction constant. Hence, the source of the magnetic momentum of a particle are both its spin and its angular momentum. Dependencies of energy losses are investigated versus the angle of particle motion in respect of the external magnetic field and its strength. Do you want to read the rest of this article? Request full-text. Citations (2). References (0). Energy loss of a charged particle in an electron gas in the second Born approximation. Conference Paper. The scattering of a charged particle moving in an electron gas by quantum field theory methods has been reviewed. Probability of the process in the first Born approximation has been obtained (without the use of the Green's function). The analysis of the general expression for the probability in the second Born approximation has been done. View. Show abstract. Nucleosynthesis Constraints on a Massive Gravitino in Neutralino Dark Matter Scenarios. A charged particle experiences a force when moving through a magnetic field. What happens if this field is uniform over the motion of the charged particle? What path does the particle follow? In this case, the particle's kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed. Figure 1: A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small X's - like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The period of the charged particle going around a circle is calculated by using the given mass, charge, and magnetic field in the problem.