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Abstract. Let Ln be the collection of all (Littlewood) polynomials of degree n with coeffi-

cients in {−1, 1}. In this note we prove that if (P2ν) is a sequence of polynomials P2ν ∈ L2ν

and each zero of each polynomial is on the unit circle, then

M2ν > (2ν − 1)a ,

where a := 1 − log3
π
2

> 1
2

and M2ν is the maximum modulus of P2ν on the unit circle. A

similar result is conjectured for Littlewood polynomials of odd degree. Our main tool here is

the Borwein-Choi Factorization Theorem.

1. Introduction

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the
complex plane, is denoted by ∂D. Let Kn be the set of all polynomials of degree n with
complex coefficients of modulus 1. Elements of Kn are often called (complex) unimodular
polynomials of degree n. Let Ln be the set of all polynomials of degree n with coefficients
in {−1, 1}. Elements of Ln are often called real unimodular polynomials or Littlewood
polynomials of degree n. The Parseval formula yields

∫ 2π

0

|Pn(eit)|2 dt = 2π(n + 1)

for all Pn ∈ Kn. Therefore

min
z∈∂D

|Pn(z)| ≤ √
n + 1 ≤ max

z∈∂D
|Pn(z)| .

An old problem (or rather an old theme) is the following.
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Problem 1.1 (Littlewood’s Flatness Problem). How close can a Pn ∈ Kn or Pn ∈ Ln

come to satisfying

(1.1) |Pn(z)| =
√

n + 1 , z ∈ ∂D?

Obviously (1.1) is impossible if n ≥ 1. So one must look for less than (1.1), but then there
are various ways of seeking such an “approximate situation”. One way is the following. In
his paper [Li1] Littlewood had suggested that, conceivably, there might exist a sequence
(Pn) of polynomials Pn ∈ Kn (possibly even Pn ∈ Ln) such that (n + 1)−1/2|Pn(eit)|
converge to 1 uniformly in t ∈ R. We shall call such sequences of unimodular polynomials
“ultraflat”. More precisely, we give the following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial Pn ∈ Kn is ε-flat if

(1 − ε)
√

n + 1 ≤ |Pn(z)| ≤ (1 + ε)
√

n + 1 , z ∈ ∂D .

Definition 1.3. Given a sequence (εnk
) of positive numbers tending to 0, we say that a

sequence (Pnk
) of polynomials Pnk

∈ Knk
is (εnk

)-ultraflat if each Pnk
is (εnk

)-flat. We
simply say that a sequence (Pnk

) of polynomials Pnk
∈ Knk

is ultraflat if it is (εnk
)-ultraflat

with a suitable sequence (εnk
) of positive numbers tending to 0.

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely,
in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting that, for all Pn ∈ Kn

with n ≥ 1,

(1.2) max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√

n + 1 ,

where ε > 0 is an absolute constant (independent of n). Yet, refining a method of Körner
[Kö], Kahane [Ka] proved that there exists a sequence (Pn) with Pn ∈ Kn which is (εn)-
ultraflat, where

εn = O
(
n−1/17

√
log n

)
.

See also [QS]. Thus the Erdős conjecture (1.2) was disproved for the classes Kn. For the
more restricted class Ln the analogous Erdős conjecture is unsettled to this date. It is a
common belief that the analogous Erdős conjecture for Ln is true, and consequently there
is no ultraflat sequence of polynomials Pn ∈ Ln. An interesting result related to Kahane’s
breakthrough is given in [Be]. For an account of some of the work done till the mid 1960’s,
see Littlewood’s book [Li2] and [QS]. The structure of ultraflat sequences of unimodular
polynomials is studied in [Er1], [Er2], [Er3], and [Er4], where several conjectures of Saffari
are proved.

2. New Result

The Rudin-Shapiro polynomials appear in Harold Shapiro’s 1951 thesis at MIT and
are sometimes called just Shapiro polynomials. See Chapter 4 of [Bo] for the construc-
tion(s). Cyclotomic properties of the Rudin-Shapiro polynomials are discussed in [BLM].
A sequence (Pn) of Rudin-Shapiro polynomials satisfies Pn ∈ Ln and

|Pn(z)| ≤ C
√

n + 1 , z ∈ ∂D ,
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with an absolute constant C. We prove that a sequence of Littlewood polynomials of even
degree with Mahler measure one is far from having the above “flatness” property of a
sequence of Rudin-Shapiro polynomials. Note that (see page 271 of [BE], for instance) a
Littlewood polynomial has Mahler measure one if and only if it has all its zeros on the
unit circle ∂D.

Theorem 2.1. If (P2ν) is a sequence of polynomials P2ν ∈ L2ν and each zero of each
polynomial is on the unit circle, then

M2ν > (2ν − 1)a ,

where a := 1 − log3
π
2 > 1

2 and M2ν is the maximum modulus of P2ν on the unit circle.

It is conjectured that a similar result holds for Littlewood polynomials of odd degree.
To prove Theorem 2.1 we need the result from [BC] stated below.

Theorem 2.2 (Borwein-Choi). Every polynomial P ∈ Ln of even degree can be factor-
ized as

P (z) = ±Φp1(±z)Φp2(±zp1) · · ·Φpr
(±zp1p2···pr−1) ,

where n − 1 = p1p2 · · · pr, the numbers pj are primes, not necessarily distinct, and

Φp(z) =
p−1∑
j=0

zj =
zp − 1
z − 1

is the pth cyclotomic polynomial.

It is conjectured that this characterization also holds for polynomials P ∈ Ln of odd
degree. This conjecture is based on substantial computation together with a number of
special cases.

Proof of Theorem 2.1. We use the factorization theorem of Borwein and Choi. We prove
the theorem by induction on the number of factors. To implement the inductive step we
start the numbering of the factors and the corresponding primes from the the end. The
proof of the inductive step goes as follows.

Suppose the theorem is true for f , where f has k − 1 factors. We have to prove that
theorem is true for

g(z) := Φp(±z)f(zp) .

Let M(f) be the maximum modulus of f on the unit circle. The key observation is that
M(f) is achieved by |f(zp)| at a system of p equidistant points on the unit circle. Denote
these by z1 , z2 , . . . , zp. Then there is at least one zj such that the angular distance between
1 and zj is at most 2π/(2p). Similarly there is at least one zj such that the angular distance
between −1 and zj is at most 2π/(2p). Now the proof can be finished by Lemma 2.3 below
the proof of which is a straightforward geometric argument. Using Lemma 2.3 the proof
of the inductive step is obvious, since a := 1 − log3

π
2 > 1

2 ensures (2/π)p ≥ pa for every
p ≥ 3. In fact, using the prime factorization of 2ν − 1, where 2ν is the degree of P2ν , one
can get a larger value of the exponent a in the theorem if the primes in the factorization
of 2ν + 1 are large. �
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Lemma 2.3. If z is a point on the unit circle such that the angular distance of z from 1
is at most 2π/(2p), then |Φp(z)| ≥ (2/π)p. If z is a point on the unit circle such that the
angular distance of z from −1 is at most 2π/(2p). Then |Φp(−z)| ≥ (2/π)p.

Proof of Lemma 2.3. Recall that

Φp(z) =
zp − 1
z − 1

and sin t ≥ (2/π)t for every t ∈ [0, π/2]. �
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[Er4] T. Erdélyi, On the real part of ultraflat sequences of unimodular polynomials: consequences

implied by the resolution of the Phase Problem, Math. Ann. 326 (2003), 489–498.
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In the present paper, we study the class LPn which consists of Laurent polynomials P (z) = (n + 1) +. n X. ck (z k + z âˆ’k ), k=1 k â€“
odd.Â  2. Barker sequences and norms of polynomials on the unit circle Let P (z) = an (z âˆ’Î±1 )(z âˆ’Î±2 ) Â· Â· Â· (z âˆ’Î±n ) âˆˆ C[z] be
a complex polynomial. The Mahler measure of P (z) is defined by n Y M (P ) = |a| max {1, |Î±j |} . j=1. In view of Jensenâ€™s formula
[17], one has Z 2Ï€ 1 log |P (eit )|dt.Â  Mahler [16] investigated the maximum of M (P ) for polynomials with bounded coefficients. Mahler
proved that M (P ) is maximized if one takes polynomials P with complex coefficients of equal modulus. Subsequently, Fielding [12],
Beller and Newman [2] proved that for such polynomials, the maximum of M (P )/||P ||2 tends to 1 as the degree n increases to infinity.


