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1. Introduction
The disciplines of probability and statistics have fundamentally changed the way we do science and the way
we think about our world. Many scholars have argued (e.g., Cohen, 1990; Gigerenzer, 1990; Hacking, 1990)
that a probabilistic revolution has occurred in our century and that notions of randomness and uncertainty
have opened up whole new areas of mathematics and science. This has released a ground swell of interest in
subjects such as complexity, chaos, and artificial life. Statistical methods are ubiquitous in the scientific
literature. Courses in probability and statistics are required for virtually all students in the natural and social
sciences. Our daily newspapers are full of statistics about such matters as lung cancer risks, divorce rates,
birth control failure rates, variation in temperature, the purity of soap, etc.

Yet, despite the rapid infiltration of probability and statistics into our science and media,, there is substantial
documentation of the wide spread lack of understanding of the meaning of the statistics we encounter
(Gould, 1991; Konold, 1991; Phillips, 1988; Piaget, 1975; Tversky & Kahneman, 1971). Even highly
educated professionals who use probability and statistics in their daily work have great difficulty
interpreting the statistics they produce (Kahneman & Tversky, 1982).

Besides a lack of competence and understanding, students express a great deal of dislike towards courses in
probability and statistics-an antipathy well captured by the oft-quoted line, attributed to both Mark Twain
and Benjamin Disraeli:"There are three kinds of lies: lies, damn lies, and statistics."
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Most students first encounter the subject of probability in the form of school exercises in calculating ratios
of frequencies and binomial coefficients. As a result, the subject matter of probability and statistics is seen
as an assemblage of formulae to be committed to memory. When students fail to master the techniques
taught to them, better methods are sought to improve their ability to calculate and apply the formulae. But
very little is done in school to explore basic ideas of probability or respond to questions such as: "what is a
normal distribution and what makes it useful?" or "how can something be both random and structured?"
Partially because the meanings of core probabilistic notions are still being debated by philosophers of
mathematics and science (e.g., Chaitin, 1987; Kolmogorov, 1950; Savage, 1954; Suppes, 1984; von Mises,
1957), it is assumed that these meanings are too hard for students to access. "Safe probability" is best
practiced through formal exercises without too much attention to the meanings of underlying concepts.

There is a substantial literature concerning the topic of decision-making under uncertainty (e.g., Cohen,
1979; Edwards & von Winterfeldt, 1986; Evans, 1993; Kahneman & Tversky, 1973; 1982; Nisbett, 1980;
Nisbett et al, 1983; Tversky & Kahneman, 1974; 1980; 1984). Much of this literature documents the
systematic errors and biases people display when attempting to make judgments under uncertainty. A
common conclusion drawn by educators and researchers from this research is that "people just aren't built
for doing probability," our intuitions are faulty and are not to be trusted. So, again, the safe practice for
educators wishing their students to master the material is to instill in them a mistrust of their intuitive
responses and a healthy respect for the formulae [1].

The cost of this highly formal instruction in probability and statistics is high. While the best and brightest do
manage to learn to use the right statistical tests in the appropriate contexts, even they do not really
understand what they are doing. They experience a kind of "epistemological anxiety"(Wilensky 1993; in
preparation) anxiety about the nature of the knowledge they are producing and what justifies it. This anxiety
leads to skepticism about the validity of statistical knowledge. Add to this mix the unscrupulous use of
statistical arguments to mislead voters and consumers and we begin to understand why the subject
stimulates so much distaste. The cost of this educational approach is to deprive learners from accessing core
probabilistic and statistical notions which are powerful means of making sense of the world.

In this paper, I present a case study of a learner engaged in a classical probability paradox. The learner was
one of seventeen interviewees studied in depth as part of the Connected Probability project. I start by briefly
describing the Connected Probability project and its theoretical framework-the Connected Mathematics
research program. Part of the learning environment provided in the Connected Probability project is a
computer modeling language suitable for probability investigations-a version of he language StarLogo
(Resnick, 1992; Wilensky, 1993). I, then, present the probability paradox with which the subject is engaged
and an account of her investigation. The paradox was selected because of its potential for engaging learners
in a deeper investigation into the meaning of the concept of "random"-a fundamental concept of probability
theory. I conclude by arguing three points illustrated in the case study:

1. that providing support for seriously engaging such paradoxes is an important avenue to relieving
epistemological anxiety about the nature of probabilistic concepts;

2. that programming can be an effective tool for resolving mathematical paradoxes (by making their
hidden assumptions [2] explicit and concrete) and

3. that through programming their own computational models (and thus making their own mathematics),
learners gain a much deeper understanding of probabilistic concepts than through the use of
simulations or pre-built computational models.
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2. Theoretical Framework

2.1 The Connected Mathematics Research Program

The name "Connected Mathematics" comes from two seemingly disparate sources, the literature of emergent
artificial intelligence (AI) and the literature of feminist critique. From emergent AI and in particular from
the Society of Mind theory (Minsky, 1987; Papert, 1980), Connected Mathematics takes the idea that
concepts cannot have only one meaning [3]. Only through their multiple connections do concepts gain
meaning. From the feminist literature (e.g., Belenky et al., 1986; Keller, 1983; Gilligan, 1977; Surrey,
1991), it takes the idea of "connected knowing": knowing that is intimate and contextual as opposed to an
alienated, disconnected and formalistic knowing. In this section, I only briefly sketch the Connected
Mathematics approach. A more comprehensive description can be found in (Wilensky, 1993; forthcoming-
a).

The Connected Mathematics approach is rooted in the constructionist (Papert, 1991; 1993) learning
paradigm. As such, it holds that the character of mathematical knowledge, is inextricably interwoven with
its genesis-both its historical genesis and its development in the mathematical learner. A conception of
mathematics as disconnected from its development leads to the misguided pedagogy of the traditional
mathematics curriculum-a "litany" of defintion- theorem-proof and its attendant concepts stipulated by
formal definition [4]. In contrast to approaches that attempt to explain failures of mathematical
understanding in technical or information processing terms, Connected Mathematics seeks to explain these
obstacles in epistemological terms. Obstacles to understanding are failures of meaning making and since
meaning is made through building connections, Connected Mathematics sees these as fundamentally failures
of connection.

Paradox can be an important tool of a Connected Mathematics learning environment. The recognition of
paradox, is the recognition that (at least) two conceptual structures have not been integrated. This explicit
recognition is the first step in making the connections between the two structures that will resolve the
paradox and, most often, thereby, generate new mathematics.

The vision of mathematics as being made and not simply received leads naturally to a role for technology.
Technology is not there simply to animate received truth, it is an expressive medium-a medium for the
making of new mathematics. It follows that we can make better use of computational technologies than
simply running black-box simulations-we can make mathematics by constructing computational
embodiments of mathematical models. The true power of the computer will be seen not in assisting the
teaching of the old topics but in transforming ideas about what can be learned.

Technology here is to be construed in a broad sense-the notations in which we express mathematics and the
mathematical concepts themselves are artifacts of the technology of the period of their creation. The
emergence of new powerful computational technologies, therefore implies a radical change in both the
concepts and semiotic activities of a newly contextualized mathematics.

2.1.1 Connected Mathematics and Current Standards of Mathematics Reform

Connected mathematics moves beyond reform documents such as the Standards of the National Council of
Teachers of Mathematics (NCTM Standards, 1991a; 1991b) in its serious reexamination of the warrant for
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the current mathematical curriculum (see also Confrey, 1993a). In so doing, it proposes new standards for
the curriculum in terms of content, process, beliefs and context. It expands mathematics content beyond the
boundaries circumscribed by school and outdated technology. New technologies are used imaginatively to
make abstract mathematical concepts concrete, to explore areas of mathematics previously inaccessible and
to create new mathematics (e.g., Abelson & diSessa, 1980; Abelson & Goldenberg, 1977; Cuoco &
Goldenberg, 1992; Edwards, 1992; Feurzeig, 1989; Harel, 1992; Leron & Zazkis, 1992; Noss & Hoyles,
1991; Papert, 1972; 1980; Resnick, 1991; Wilensky, 1993).

In contrast to the NCTM Standards, which portrays an "image" of mathematics (see Brandes, this volume)
as essentially a problem solving activity, the vision of Connected Mathematics is more generative-the
central activity being making new mathematics. In so doing, it fosters a culture of design and exploration-
designing new representations of mathematics and encouraging critique of those designs.

Connected Mathematics acknowledges and attends to the affective side of learning mathematics and looks
critically at the role of shame in the mathematical community. Listening to learners and fostering an
environment in which it becomes safe for mathematical learners to express their partial understandings[5]
results in a dismantling of the culture of shame which paralyzes learners-preventing them from proposing
the tentative conjectures and representations necessary to make mathematical progress. In doing so, it parts
company with the literature on misconceptions which highlights the gulf between expert and novice.
Instead, Connected Mathematics stresses the continuity between expert and novice understanding[6],
noticing that even expert mathematicians have had to laboriously carve out small areas of well connected
clarity from the generally messy terrain (see also Smith, diSessa, & Roschelle, 1994).

2.2 Connected Probability

The Connected Probability project is one major branch of the Connected Mathematics program. In the
Connected Probability project, we are engaged in building Connected Mathematics environments for
learning probability. As a first step towards this goal, seventeen in-depth interviews[7] about probability
were conducted with learners age fourteen to sixty-four. Interviews were open ended and most often
experienced by the interviewees as extended conversations. The interviewer guided these conversations so
that the majority of a list of twenty-three topics was addressed. The interview topics ranged from attitudes
toward situations of uncertainty, to interpretation of newspaper statistics, to the design of studies to collect
desired statistics and to formal probability problems.

These topics were valuable for gaining insight into people's ideas about probability, and encouraging them
to think through probabilistic issues. In one sense probability is ubiquitous in our everyday lives. Yet, since
probability is fundamentally about large numbers of instances, these singular everyday experiences may not
be useful for building our probabilistic intuition[8]. Rarely, in our everyday lives, do we have direct and
controlled access to large numbers of experimental trials, measurements of large populations, or repeated
assessments of likelihood with feedback. We do regularly assess the probability of specific events occurring.
However, when the event either occurs or not, we don’t know how to feed this result back into our original
assessment. After all, if we assess the probability of some event occurring as, say, 30%, and the event
occurs, we have not gotten much information about the adequacy of our original judgment. Only by repeated
trials can we get the feedback we need to evaluate our judgments. Without the necessary feedback, it is
difficult to develop our probabilistic intuitions and make probabilistic concepts concrete. A powerful way to
bridge this gap between singular experiences and probabilistic reasoning is through the use of exploratory
computational environments. The processing power of the computer can give learners immediate access to

http://ccl.northwestern.edu/papers/paradox/lppp/#5
http://ccl.northwestern.edu/papers/paradox/lppp/#6
http://ccl.northwestern.edu/papers/paradox/lppp/#7
http://ccl.northwestern.edu/papers/paradox/lppp/#8


7/1/09 3:43 PMMaking Sense of Probability Through Paradox and Programming

Page 5 of 26http://ccl.northwestern.edu/papers/paradox/lppp/

large amounts of data usually distributed widely over space or time. This can provide the necessary
feedback needed to develop concrete understandings of probabilistic concepts. In creating an environment
for learning probability, it is therefore natural to consider computational tools.

One of the investigatory tools made available to the learners in this study was a programming language,
StarLogo (Resnick, 1992; Wilensky, 1993) specially adapted for modeling probabilistic phenomena.
Starlogo is a massively parallel version of the computer language Logo. It allows the user to control
thousands of "turtles" on a computer screen. Each of the turtles (or agents) has its own local state and can
be given its own local procedures and rules of interaction[9] . Thus, the user can model the emergent effects
of the behavior of many distributed agents each following its own local rules. In particular, the key
probabilistic notion of distribution can be seen to arise from the actions of many independent agents (see
Wilensky, in preparation). Starlogo facilitates the design of probability experiments which allow learners to
test their conjectures. They can use the feedback to modify them and clarify their underlying structures via
successive refinement (Leron, 1983). The use of Starlogo to design probability experiments is in keeping
with the constructionist (Papert, 1991) model of learning-that a particularly felicitous way to build strong
mental models is to produce physical or computational constructs which can be manipulated and debugged.
As we shall see in the case that follows, being able to articulate a model of a probabilistic concept (through
programming) can lead to rich insights into the nature of probabilistic concepts such as randomness and
distribution. In contrast to consumers of ready made models, learners who construct computational models
are afforded the opportunity to refine their models through debugging. Through debugging their programs
they can debug their probabilistic concepts and make them concrete (Wilensky, 1991).

3. The Case Study

3.1 Overview

In this paper, I present a case study of a student engaged in exploring the meaning of randomness in the
context of a particular mathematical problem. This problem, first proposed by Bertrand over a hundred
years ago (Bertrand, 1889) has led a fascinating mathematical life over the last century. Over the last
hundred years, mathematicians have given many different solutions (e.g. Borel, 1909; Poincaré, 1912;
Uspensky, 1937; Keynes, 1921; von Mises, 1964) and continue to propose new solutions and reject old
arguments to this day (e.g., Marinoff, 1994). This problem, which became known as "Bertrand's
paradox[10]", engaged leading mathematicians in a debate over the range of applicability of the principle of
non-sufficient reason (also called the principle of indifference-i.e., the assignment of uniform probability
distributions in situations of ignorance) that was a keystone of the evolving notion of randomness. Given the
attention of Connected Mathematics to the genesis of mathematical knowledge both historically and
developmentally, Bertrand's paradox was a natural candidate for inclusion in this study. It was hoped that
the role of Bertrand's paradox in the historical development of the notion of random would be mirrored in
the development of the interviewee's thinking. Interviewees were capable of calculating more than one
numerical answer to the problem. The contradiction between two or more numerical answers to a seemingly
well specified probability question might then be experienced by the interviewee as a paradox. The
resolution of this contradiction could then lead to a deeper and richer understanding of the notion of
randomness.

In the case reported on below, the paradoxical element was introduced by the interviewer. Once that
intervention occurred, no further support was needed for the interviewee to recognize it as a paradox[11].
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The resolution of the paradox, however, was greatly facilitated by use of the programming language.

Some researchers and educators have recently argued that students cannot make practical use of general
purpose programming languages in their subject domain learning (e.g., Soloway, 1993; Steinberger,
1994)[12]. It is my hope that the case study below will help dispel this claim and show the interesting and
productive interactions that can occur between programming and learning mathematics. Indeed, it is through
programming that the interviewee first "thickens" (Geertz, 1973) her understanding of "random"-by seeing
the need for a process, be it computational or physical, to generate randomness. Thus, a computational idea
leads to a mathematical idea, resulting in the recognition of the intimate tie between a random process and a
probability distribution[13]. This thickening of the notion of random and embedding it in a web of related
concepts and activities leads to a Connected Mathematics understanding of randomness[14].

3.2 The Paradoxical Question:

From a given circle, choose a random chord.
What's the probability that the chord is longer than a radius

This question was, in one sense, the most formally presented question in the interview. On the surface, it
most mirrored the kinds of questions that students get in school. But, because of its hidden ambiguity many
rich interviews arose from it. It was particularly rich in evoking epistemological questioning and
investigations into the meaning of the word random and how "randomness" connects to both mathematical
distribution functions and the physical world.

The question was selected because it had many possible "reasonable" answers. Among the answers (backed
up by solid reasonable arguments) that interviewees gave for the requested probability were 1/2, 2/3 , 3/4 ,
square root of 3/2 . The language of the question,"choose a random chord", implies that the meaning of
random chord is well specified-there should only be one way to choose chords that are truly random. All of
the interviewees shared this assumption. When they encountered two different seemingly correct solutions to
the question that led to different values for the probabilities, they were therefore confronted with a paradox.

Each of the answers listed above is in fact the correct answer for a particular probability experiment.
Depending on the physical experiment conducted, or, in the corresponding mathematical language, the
initial distribution that is assigned to the chord lengths, different answers will be obtained. By exploring the
paradox, learners came to see there was no unique way to specify "random chord" (or in one interviewee's
language "there's no such thing as a random chord"). Different chords are appropriate for different
occasions. Different physical experiments lead to different probabilities and correspond to different ways of
choosing chords. Depending on which method is used to select chords, different distributions of chord
lengths will ensue. This leads to seeing the deep and powerful connections between randomness,
distributions and physical experiments. It lays the intuitive substrate needed to create probabilistic models
and to make sense of more advanced probability concepts such as probability measures.

3.3 Case Study: Ellie

Of the seventeen participants in the Connected Probability project, fifteen engaged with the random chord
problem. These fifteen interview fragments include many different themes and investigation paths. Each
case is different. Nonetheless, the case that follows can be described as typical, if not in its specific details,
then in the general outline of the investigation.
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3.3.1 First Encounter

Ellie is a computer professional who has a solid undergraduate math background. Like many of the other
interviewees, Ellie gets into trouble trying to understand the meaning of random. We could have resolved
her difficulty by specifying a particular distribution of chords, or by describing a specific experiment to
generate the chords. But had we done that, Ellie would not have developed her insights into the meaning of
randomness. As teachers, it is often difficult for us to watch learners struggle with foundational questions
and not "clear up the misunderstanding". However, the temptation to intervene is more easily resisted if we
keep in mind that it is only by negotiating the meaning of the fundamental concepts, by following
unproductive, semi-productive and multiple paths to this meaning that learners can make these concepts
concrete.

Many interviewees answered this question fairly quickly using the following argument. Chords range in size
from 0 to 2r. Since we're picking chords at random, they'’re just aslikely to be shorter than "r" they are to be
longer thann "r". Hence the probability is equal to 1/2 .

Ellie engaged herself with this question but approached it differently. She began thinking about the problem
by drawing a circle and a chord on it which she knew had length equal to the circle’s radius, as shown
below.

After contemplating this drawing for a while, she then drew the following figure:

Figure 2.
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With the drawing of this picture came an insight. She pointed at the triangle in the figure and said: Ellie: It
has to be equilateral because all the sides are equal to a radius. So that means six of them fit around a circle.
That's right, 6 * 60 = 360 degrees. So, that means if you pick a point on a circle and label it P, then to get a
chord that's smaller than a radius you have to pick the second point on either this section of the circle
[labeled A in the figure above] or this one [labeled B in the figure above]. So since each of those are a sixth
of the circle, you get a one third chance of getting a chord smaller than a radius and a two thirds chance of
a chord larger than a radius[15].

Ellie was quite satisfied with this answer and I believe would not have pursued the question any more if not
for my prodding.

3.3.2 Introducing the Paradox

U: I have another way of looking at this problem that gives a different answer.

E: Really? I don’t see how that could be.

U: Can I show you?

E: Sure. But I bet it's got a mistake in it and you're’ trying to trick me.

U: OK. Let me show you and you tell me.

I, then, drew the figure below:

Figure 3.

U: Consider a circle, C1, of radius r. Draw a chord, AB, of length r. Then drop a per-pendicular onto AB
from the center of the circle, O, intersecting AB in a point, P. Then P is a mid-point of AB. Now we
calculate the length of OP. We have OA = r and AP = r/2. By Pythagoras, we have OP = 3/2 * r. Now draw
a circle, C2, of radius OP centered at O. If we pick any point on C2 and draw a tangent to the circle, C1, at
that point, then the resultant chord has length r. If we pick a point, P, inside C2 and draw the chord which
has P as mid-point then that chord must be longer than r.

Similarly, if we pick a point inside C1 but outside C2 and draw the chord which has that point as mid-point,
then that chord must be shorter than r. Now pick any point, Q, inside C1. Draw a chord, EF, which has Q as

http://ccl.northwestern.edu/papers/paradox/lppp/#15
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mid-point. EF will be bigger than a radius if and only if Q is inside C2. It follows that the probability of
choosing a chord larger than a radius is the ratio of the areas of C1 and C2. The area of C1 = p * r2. The
area of C2 = p * OP2 = p * 3/4 * r2. So the ratio of their areas is 3/4 and therefore the probability of a chord
being larger than a radius is also 3/4 , not 2/3 as you said.

This explanation had a disquieting effect on Ellie. She went over it many times but was not able to find a
"bug" in the argument. After repeatedly struggling to resolve the conflict, she let out her frustration:

E: I don't get it. One of these arguments must be wrong! The probability of choosing a random chord bigger
than a radius is either 2/3 or 3/4 . It can't be both. I'm still pretty sure that it's really 2/3 but I can't find a
hole in the other argument.

U: Can both of the arguments be right?

E: No. Of course not.

U: Why not?

E: It's obvious! Call the probability of choosing a chord larger than a radius p. Then argument #1 says p =
2/3 and argument #2 says p = 3/4 . If both argument #1 and #2 are correct then 2/3 = 3/4 which is
absurd[16].

Here Ellie is quite sure that there is a definite and unique meaning to the concept "probability of choosing a
random chord larger than a radius" even though she admits that she is not completely certain what that
meaning is.

3.3.3 Programming

U: Would writing a computer program help to resolve this dilemma?

E: Good idea. I can program up a simulation of this experiment and compute which value for the
probability is correct! I should have thought of that earlier.

Ellie then spent some time writing a Starlogo program. As she worked to code this up, she soon began to
feel uneasy with her formulation. A few times she protested: "But I have to generate the chords somehow.
Which of the two methods shall I use to generate them?" Nevertheless, she continued writing her program,
using an approach based on argument #1. Basically, she made each turtle turn randomly and move forward a
distance equal to the circle's radius to pick a point on the circle. Then, she made the turtle return to the
center, turn randomly again, and move forward to pick a second point on the circle, thus defining a chord.
At various points, she was unsure how to model the situation. She experimented with using the same radius
for each turtle as well as giving each turtle its own radius. She experimented with calculating the statistics
over all trials of each turtle as opposed to calculating it over all the trials of all the turtles. Finally, she
decided both were interesting and printed out the probability over all trials as well as the minimum and
maximum probability of any turtle.

Below are the main procedures of Ellie's program. Comments (preceded by semi-colons) have been added
by the author for clarity of the exposition.

http://ccl.northwestern.edu/papers/paradox/lppp/#16
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TURTLE PROCEDURES[17]

;;; this turtle procedure sets up the turtles[18]
to setup
setxy 0 0            ;;; place myself at the origin
make "radius 10   ;;;; make my radius 10 units
make "p1x 0        ;;;; initialize temporary variables
make "radius 10   ;;;; make my radius 10 units
make "p1x 0        ;;;; initialize temporary variables
make "p1y 0
make "p2x 0
make "p2y 0
make "chord-length 0
make "trials 0
make "big 0
make "prob 0
end

;;; This is a turtle procedure which generates a random chord.
to gen-random-chord
fd :radius               ;;;; go to the circumference of the circle
make "p1x xpos      ;;;; remember where I am 
make "p1y ypos
bk :radius              ;;;; go back to the center of the circle (the origin)
rt random 360         ;;;; turn randomly
fd :radius                ;;;;go to a new point on the circumference of the circle
make "chord-length distance :p1x :p1y     ;;;; the chord length is the distance
                                          ;;;; from where I was before to where
                                          ;;;; I am now
bk :radius                 ;;;; go back to the center of the circle
                           ;;;; (the origin)
end
   
;;;; this turtle-procedure gets executed by each turtle at each tick of the
;;;;clock
to turtle-demon
gen-random-chord                 ;;;; choose a new chord by the procedure 
above
make "trials :trials + 1         ;;;; increment the number of chords chosen
if bigger? [make "big :big + 1]  ;;;; if the new chord is bigger than the
                                 ;;;; radius, increment the number of chords
                                 ;;;; chosen so far which are bigger than the
                                 ;;;; radius
make "prob :big / :trials        ;;;; the probability (so far) of choosing a
                                 ;;;; chord bigger than the radius is the  
                                 ;;;; proportion of chords chosen so far which
                                 ;;;; are bigger than the radius end

;;;; is the turtles chord bigger than a radius?
to bigger?
:chord-length > :radius          ;;;; return "true" if chord chosen is bigger
                                 ;;;; than the radius end
                                 
OBSERVER PROCEDURES

;;;; observer-demon summarizes the results of all the turtles
;;;; it gets executed at every clock tick.
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to observer-demon
make "total-trials turtle-sum [:trials]  ;;;; get the total number of chords
                                         ;;;; chosen by all the turtles

make "total-trials turtle-sum [:trials]  ;;;; get the total number of chords 
                                         ;;;; chosen by all the turtles
make "total-big turtle-sum [:big]        ;;;; get the total number of chords
                                         ;;;; chosen by all the turtles  
                                         ;;;; bigger than a radius
make "total-prob :total-big / :total-trials  ;;;;  the final probability of
                                             ;;;; choosing a chord bigger than
                                             ;;;; a radius is the ratio of the
                                             ;;;;  above two totals
every 10 [type :total-big type :total-trials
          print :total-prob type turtle-min [prob]  ;;;; print some statistics
                                         ;;;; including the probabilities of
                                         ;;;; the turtles with the smallest
                                         ;;;; and largest probabilities
          print turtle-max [prob]]
end

Ellie ran her program and it indeed confirmed her original analysis. On 2/3 of the total trials the chord was
larger than a radius. For a while she worried about the fact that her extreme turtles had probabilities quite far
away from 2/3 , but eventually convinced herself that this was OK and that it was the average turtle "that
mattered". But Ellie was still bothered by the way the chords were generated. E: OK, so we got 2/3 as we
should have. But what's bothering me is that if I generate the chords using the idea you had then I'll
probably get 3/4[19]. Which is the real way to generate random chords?(emphasis added)

The need to explicitly program the generation of the chords precipitated an epistemological shift. The focus
was no longer on determining the probability. It now moved to finding the "true" way to generate random
chords. This takes Ellie immediately into an investigation of what "random" means. At this stage she is still
convinced, as she was before about the probability, that there can be only one set of random chords. She
assumes that the problem is to discover this unique set.

U: That's an interesting question.

E: Oh, I see. We have two methods for generating random chords-what we have to do is figure out which
produces really random chords and which produces non-random chords. Only one of these would produce
really random chords and that's the one that would work in the real world.

U: The real world? Do you mean you could perform a physical experiment?

E: Yes. I suppose I could. ...Say we have a circle drawn on the floor and I throw a stick on it and it lands on
the circle. Then the stick makes a chord on the circle. We can throw sticks and see how many times we get
a chord larger than a radius.

U: And what do you expect the answer to be in the physical experiment?

E: Egads. (very excitedly)We have the same problem in the real world!!! We could instead do the
experiment by letting a pin drop on the circle and wherever the pin dropped we could draw a chord with the
pin as midpoint. Depending on which experiment we try we will get either answer #1[20] or #2. Whoa, this
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is crazy. So which is a random chord? Both correspond to reality?.....

This was a breakthrough moment for Ellie, but she was not done yet. Though her insight above suggests
that both answers are physically realizable, Ellie was still worried on the mathematics side" that one of the
methods for generating chords might be "missing some chords" or "counting chords twice". Ellie needed to
connect her insight about the physical experiment to her knowledge about randomness and distribution. She
spent quite a bit of time looking over the two methods for generating chords to see if they were counting "all
the chords once and only once". She determined that in her method, once she fixed a point P, there was a
one-to-one correspondence between the points on the circle and the chords having P as an end- point. She
concluded therefore that there "are as many chords passing through P as there are points in the circle".
However, there will be more chords of a large size than chords of a small size. As could be seen from her
original argument, there will be twice as many chords of length between r and 2r as there are of chords of
length between 0 and r. Now, for the first time, Ellie advanced the argument that many interviewees had
given first.

3.3.4 Reflection

E: I never thought of the obvious. I've been sort of assuming all along that every chord of a given size is
equally likely. But if that were true then I could have solved this problem simply. Each chord would have
an equal chance of being of length between 0 and the diameter. So half the chords would be bigger than a
radius and half smaller.

Ellie went on to see that, in argument #2, large chords are more probable than small chords. She reasoned
that for every chord of a given size (or more accurately a small size interval) there was a thin annulus of
points that would generate chords of that size by method #2. Annuli closer to the center of the circle would
correspond to large chords and annuli near the circumference would correspond to small chords. She went
on to demonstrate that annuli close to the center would have larger areas than annuli close to the
circumference. Thus large chords become increasingly more probable[21].

Another interesting feature: The program that Ellie wrote placed all the turtles at the origin and since Ellie,
as a professional programmer, wrote state transparent code[22] they stayed at the origin. Initially, she had
placed the turtles at the origin of the screen’s coordinate system because she recognized a potential bug in
her program. If she created the turtles in random positions as is typical in Starlogo the turtles might
"wrap"[23] around the screen when drawing their circles and thus incorrectly calculate their chord lengths.
But, because the turtles remained centered at the origin, the program was not very visually appealing. While
we were engaged in the interview, a student came by and watched. He asked us why nothing was happening
on the screen. Ellie explained what she was investigating and then had an idea of how to make the program
more interesting. She decided to spread the turtles out a bit so each could be seen tracing its circle, turning
yellow if its chord was longer than a radius and green if it was shorter. To spread the turtles out without
getting too close to the screen edge, Ellie told each turtle to execute the command fd random (60 -
radius)telling each turtle to move a random amount out from the origin. In doing this, the result wasn't
quite what Ellie had hoped for. Near the origin there was a splotch of color [mostly yellow] as all the turtles
were squeezed together very tightly, while near the edges the turtles were spaced out more sparsely (as in
the following figure).
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What had happened here quite by accident was a mirroring of the original dilemma. Ellie had used a linear
random function to move points into a circular planar area. There were an equal number of turtles in each
equally thick disk around the origin, but the outer disks had greater area than the inner disks and therefore
appeared less crowded.

So Ellie's function which successfully spread turtles out evenly (and what she then called randomly) along a
line did not spread them out evenly on the planar screen. This experience was an important component of
her subsequent "aha" moment-exposing her as it did to a crack in her solid and fixed notion of random

4. Discussion
As can be seen from the above interview fragment, the primary obstacles to Ellie's resolving the paradox are
epistemological in nature. She faced such questions as: Can a definitive probability problem admit two
different numerical answers? Is the notion of a random chord well defined? What is the relationship
between a physical experiment and a mathematical calculation? How do you put into correspondence an
infinite number of chords and an infinite number of points? When can you say you have selected a
reference set for which it is justified to say all chords in it are equally likely to be selected?[24] As Ellie's
interview suggests, an important finding of the Connected Probability research is that the primary obstacles
to the interviewees' facility with probability are epistemological in nature. Their difficulties stem from
fundamental confusion about such notions as randomness, distribution and expectation. The epistemological
status of these concepts was in doubt (What kinds of things are they? What makes them work? Are they
"natural" or constructed?). As a result, many interviewees reported an inability to resolve the competing
claims of conflicting probabilistic or statistical arguments. Faced with two equally compelling arguments,
they are in the position of Buridan’s ass: paralyzed between two equally appealing bales of hay. They can’t
choose either one and so never "get" any probability .

4.1 Paradox as a Learning Tool
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Responses to this paralyzing situation include:

1. Blaming themselves:
just can't see why one of these is better than the other and, in their discouragement, abandoning the
domain to experts;

2. Blaming the subject:
You can say anything with statistics and there's no way of proving you wrong

3. rejecting the importance of the conflict.

So, no big deal, Hey, they're both right.[25] No amount of purely formal instruction in the use of
probabilistic and statistical formulae can begin to address the "epistemological anxiety" that engenders these
responses. What is needed is a therapeutic intervention-the valuation of both sides of a contradictory
argument together with validation of the learner's competence to resolve these competing claims. In contrast
to the literature on misconceptions, it is important to emphasize the continuity between the learner's
confused and messy understanding of the domain and that of the experts[26][27].

Essentially, the gist of the intervention concerning paradox is creating an environment in which learners are
encouraged to pay attention to a situation in which there are conflicting probabilistic arguments, and to
replace the experience of helplessness or anxiety in the face of this conflict with the feeling of excitement
associated with a meaningful learning opportunity.

By the time Ellie had gotten to the circle chords question, she had already spent five and a half hours during
three separate days over a three-week period in a Connected Mathematics interview. During this time, she
had encountered and constructed many paradoxes and, along the way, gained confidence in her ability to
resolve them to her satisfaction. She, therefore, did not need much support on this occasion in accepting the
paradox as an opportunity for learning. She took both arguments (her own and the interviewer's) seriously.
Even though she suspected that the interviewer's argument was a clever trick, she felt a need to find a flaw
in that argument. This need to find a flaw in one side of the paradox (as opposed to just embracing the
argument that seems good to her) is a powerful avenue for learning. Less sophisticated learners are content
to find an argument they can believe and do not feel a need to refute any counterarguments. Seizing on the
plausible argument without refuting the counterargument was a common phenomenon in the interviews and
was particularly salient in discussions of the Monty Hall family of problems (Gilman, 1992; Wilensky,
1993).[28]

4.2 Programming - Making Probability Concrete

It was not until Ellie programmed a simulation of the problem that she began to resolve the paradox. Note
that she had already begun to see the direction of resolution before she ran her simulation, even before she
completed writing the program.[29] This was a common phenomenon across interviewees. Explicitly
representing the situation in which the probability problem is embedded, making it concrete, was frequently
enough to resolve the present difficulty and move to the next level of subtlety.[30] Writing the code to
generate the chords forced Ellie to embody the randomness of the chords in a computational process. This
led her to see that different computational processes generate different sets of chords (or distributions of
chord lengths). Still clinging to the idea that there was only one truly random set of chords, she moved to
the level of physical simulation where surely, she thought, she could see which set of chords would really
be picked out. At that point came the "aha" that there was no unique set of real and truly random chords-
different physical experiments would lead to different sets of "random" chords. She had made the
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connections between the physical experiments, the computational processes and the mathematics of
randomness and distribution. Equipped with this connected web of relations, we might venture to say that
Ellie would now also be ready to deal with the formalisms of measure theory and probability measures
without getting lost. The concrete foundation built up during the interview would provide support in
navigating through the formalism, guiding its use and preventing its abuse.

4.3 Using Models vs. Building Models

Some researchers have argued (e.g., Soloway & Guzdial, 1993; Steinberger, 1994) that using specialized
applications, domain-specific models, and exploratory simulations can provide the benefit of programming
without the "overhead" associated with learning the language. An illuminating comparison can be made
between the experience of programming random chords and that of using specialized probability
courseware.

One such package, ConStats (Cohen et al., in press), was designed with the objective of helping students
gain "a deep conceptual understanding of introductory probability and statistics" through an "active
experimental style of learning"(Cohen et al., 1994). As such, it is based in constructivist principles.
However, the experiments students can conduct with ConStats consist of manipulating the parameters of a
preconceived model. Students cannot program in ConStats or build models to pursue questions that arise.

The software is impressive, with well implemented graphics, an easy-to-learn user interface, extensive
contextual help facilities, and a large selection of features. A principal emphasis of the software package is
on distributions. The package contains many different distributions, both continuous and discrete, each with
its own name and associated text describing its characteristics. In addition, for each kind of distribution,
users have a host of parameters which they can manipulate and view the resultant change in the graph of
the "random variable".

ConStats has both the strengths and weaknesses of the broader class of what can be called "black-box"
simulations (i.e., simulations in which the user does not have explicit access to the modeling algorithm).
These strengths include the ability of users to engage quickly with high level models, the availability of
specialized domain specific tools, engaging user interfaces and broad coverage of the subject domain. The
chief weakness is the lack of "read/write" access to the model. As a result, learners cannot explore what
processes govern the way the parameters change the model. More importantly, they cannot explore the
consequences of changing the structure of these processes themselves. As a result, they do not develop a
solid understanding of these underlying processes.

The ConStats software was used extensively by students in a number of university-level courses. After each
course was completed, the students were given a post-test designed to measure their comprehension of
concepts "covered" by the software. The researchers conducting the evaluation (Cohen et al., 1994) report
that conceptual comprehension was significantly greater for those students using the software than for the
control group. One of the questions on the post-test was: "What" is it about a variable that makes it a
random variable?" The first author of the evaluation study reported (Cohen, 1993) that in all the exams he
has seen, not a single student had "given the correct answer", nor had a single one mentioned the concept of
distribution in his/her answer.[31] Most students just left it blank. The most frequent non-blank answer was:
"a variable that has equal probability of taking on any of its possible values". Despite the fact that they had
spent hours manipulating distributions and had plotted and histogrammed their "random variables", they
missed the connection between these activities and the concept of random variable. The connection between
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distribution and randomness was perhaps too obvious to the software designers. They did not recognize the
necessity of the learners constructing that connection for themselves if they are to explore it further through
the software.

The ConStats software encourages exploration through changing parameters which may explain its success
in improving conceptual understanding in courseware subject matter. But ConStats users understanding of
randomness is seemingly impoverished. They have not made connections between the distributions they
manipulated and observed and the concept of random variable. It is unlikely that they have developed a
widely-connected and intuitive sense of the concept of randomness. In contrast, most of the interviewees in
the Connected Probability project developed a deeper understanding of randomness. By explicitly
confronting the question of the meaning of randomness and by explicitly representing it in a program, the
interviewees developed strong intuitions that were not developed by the users of the courseware.

Leaving aside the differences in conceptual understanding promoted by the two approaches, there is also an
important issue of educational goals. Particularly in the area of statistics, the educational goal should
emphasize interpreting and designing statistics from science and life rather than mastery of curricular
materials. In order to make sense of scientific studies, it is not sufficient to be able to verify the stated
model; one needs to see why those models are superior to alternative models. In order to understand a
newspaper statistic, one must be able to reason about the underlying model used to create that statistic[32]
and evaluate its plausibility. For these purposes, building probabilistic and statistical models is essential.

Computer-based exploratory environments for learning probability can facilitate greater conceptual
understanding. The computer's capacity to repeat and vary large numbers of trials, ability to show the results
of these trials in compressed time (and often in visual form), makes it possible to encapsulate events that are
usually distributed over time and space. This can provide learners with the kinds of concrete experiences
they need to build solid probabilistic intuitions.

A central issue, then, is between learners using pre-built models and learners making their own models. The
ability to run pre-built models interactively is an improvement over static textbook based approaches. By
manipulating parameters of the model, users can make useful distinctions and test out some conjectures. The
results of the Connected Probability project suggest that for learners to make use of these pre-built models,
they must first build their own models and design their own investigations.

It is possible to combine the two approaches (e.g. Eisenberg, 1991; Wilensky, forthcoming-b) by providing
pre-built models that are embedded in programming environments, creating so-called "extensible
applications"(Eisenberg, 1991). This combined approach has the advantages of both pre-built and buildable
models. The challenge of such an approach is to design the right middle level of primitives so that they are
neither
(a) too low-level, so that the application becomes identical to its programming language, nor 
(b) too high-level, so that the application turns into an exercise of running pre-conceived experiments. The
metric by which the optimal level can be judged is in the usefulness to learners. This requires an extensive
research program. The findings from this research must inform the development enterprise. 

5. Concluding Remarks
In the Connected Probability project, learners such as Ellie succeeded in making deep probabilistic
arguments that probed at the foundations of the discipline. Having understood the foundational concepts in
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this deep way, they developed a strong intuitive understanding of such concepts as randomness, distribution
and expectation. Solid intuitions about probability and statistics were clearly developed by learners in this
study. This shows that we are not, by our natures, as some have argued, unable to reason intuitively about
probability.

The Connected Probability project is an instantiation of the Connected Mathematics approach. The key
elements of the Connected Mathematics approach that enabled these changes are:

The explorations of multiple meanings of concepts and making connections between these different
representations

Like Ellie, they saw the connections between representations of randomness in different domains
including physical experiments, probability distributions and computational processes.

A focus on epistemological issues (as they specifically relate to how learners construct understandings)
Ellie focused on what it means for something (a process) to be random? Is there only one way of
choosing chords randomly or can there be multiple ways?

The use of paradox
The paradox reinforced the focus on epistemological issues- it placed her epistemology of
mathematics in doubt. Ellie wondered: What kind of discipline is mathematics if a "unique"
probability can be equal to both 2/3 and 3/4?

Conducting a learner-owned investigation (as opposed to problem solving) as the central activity of
mathematical learning

Even though the random chord problem started out as a classic formal problem, Ellie engaged herself
with it to see it as her own.

Acknowledgment of and attention to the affective side of learning mathematics
Ellie would not have engaged herself with the paradox had she not been encouraged to believe in the
pursuit enough to overcome the epistemological anxiety that usually prevents learners from getting so
engaged. Crucial to this self-confidence is a "cognitive-emotive" therapy for the sense of shame
produced by a mathematical culture that prevents learners from expressing the epistemological
anxiety and tentative understandings that are at its root.

Making mathematics (and articulating it in a concrete form)
Ellie is encouraged to create alternate representations of the problem and work out definitions of
randomness that make sense to her. This enables her to see mathematics as a personal odyssey of
meaning making, not an externally given corpus to be assimilated but not affected by her.

The use of technology as a medium for making and articulating mathematics
Ellie was able to design her own experiment to explore the different sides of the paradox. This ability
to express her partial understandings of "random chord" in a computational model was key to the
refinement of her mental model and provided a powerful semiotic context for her articulation of her
mathematical thought.

The availability of the programming environment facilitated many of these goals. The programming
environment facilitated Ellie's conducting her own investigation. It provided a language, a different notation
in which Ellie could express her mathematical ideas. It provided a signing environment, a place-holder for
these ideas to exist outside of Ellie. And because this language is dynamic-it can be "run"-it provided
feedback to Ellie's ideas. This trialogue between Ellie's mental model, the expression of her mental model in
encapsulated code and the running of that code, allowed Ellie to successively refine the creative structure of
her thought. While one might concede that it is theoretically possible for Ellie to have resolved her problem
with a pre-built model in which a randomizing parameter was modified, the leaner-modeling approach is
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clearly significant in its outcome and arguably more practical in its implementation. This is because, for
Ellie to have come to a similar set of insights, a model designer would have had to anticipate all of Ellie's
concerns and built them into the model. Clearly, this is impossible to do in general educational software
designers cannot anticipate all the directions that a learner might want to investigate and incorporate them
into a parameter model. Moreover, users of "parameter-twiddling" software realize that they are pursuing
someone else's investigation. This realization decreases the motivation of discovery. Lastly, such closed
environments reinforce a view of mathematics learning as a process of verifying already known
mathematics as opposed to seeing it as a personal odyssey of mathematics making. In designing computer-
based environments for learning probability, we must remember that allowing users to create their own
models is necessary for truly learner-owned investigations.

For many learners in the Connected Probability project, this experience of doing Connected Mathematics
was so different from their experience in regular mathematics classrooms, that they did not recognize their
activity as being mathematics. Learners who had "always hated mathematics" and had been told that they
were not "good at mathematics" were excitedly engaged in doing mathematics that could be easily
recognized by mathematicians as "good mathematics". Having created a strong intuitive foundation for the
conceptual domain, learners could also go on to engage the formal approaches and techniques with an
appreciation for how they connect to core idea of probability and statistics. Even more importantly, they
now understood that mathematics is a living growing entity which they could literally make their own.
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[1]In a graduate probability course at MIT, the professor explicitly admonished the class members not to try
to do inverse probabilities in their heads since their intuitions were not reliable. Instead, he said, always use
the Bayes formula to calculate inverse probabilities.

[2]Assumptions implicit in the formulation of the paradox or in the preconceptions of the learner.

[3]A nice example of the many meanings of "derivative" can be found in a recent paper by Thurston (1994).

[4]Formal proof and definition is an after-the-fact reconstruction of the processes of coming to know in
mathematics. The justification of such reconstruction for the purposes of communication within expert
culture is certainly allowed. What is unfortunate and damaging pedagogically is that this re-presentation
becomes an active conception of what mathematics is and what it is to know mathematics.

[5]The taboo against expressing partial understandings is endemic to school discourse. To break it, teachers
must explicitly model expressing their own confusions and groping for clarity. One reason this is hard to do
is that it is very difficult to remember what it was like not to grasp a mathematical concept that is now self
evident. There are many striking parallels between the development of conservation in children (Piaget,
1952) and the acquisition of new mathematical concepts. One feature they share is the inconceivability of
one's previous understanding "what is it like to think that there is more water in a tall glass than there was in
the shorter glass which you emptied into the taller container?"[for further discussion of this point see
(Wilensky, 1993)].

[6]Because it suggests that making is endemic to mathematical activity, the Connected Mathematics view is
that: learners make connections, they don't cross intellectual ravines. Thus the process of becoming expert in
mathematics is one of adding connections and not removing or replacing novice knowledge

[7]The shortest interview was two hours long, the longest eighteen hours and the median seven hours. These
figures refer to the face-to-face interview time. Some interviews continued over electronic mail for up to
two months following face-to-face interactions.

[8]Part of what makes an event singular is that we do not interpret it as a member of a class of events. It is
only when we can stand at a distance from the event and see it in the context of many other events, that we
can begin to make the reference classes needed to make probabilistic judgments.

[9]These "object-oriented" features of the language make StarLogo a more accessible environment for
modeling. In contrast to other modeling environments, such as STELLA (Richmond & Peterson, 1990),
which model with aggregate quantities and flows, StarLogo is "object" based, thus facilitating concrete
interactions with the basic units of the model.

[10]The name "Bertrand's paradox" was given by PoincarŽ.

[11]This was true in roughly half of the interviews in this study. The later in the interview the paradox
occurred, the more likely that it was recognized and owned.

[12]A weaker form of this claim is that programming requires too much "overhead" that distracts learners
from the mathematics at hand. This paper does not respond directly to this weaker claim. Let me note
briefly that:
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1. Logo and StarLogo are conceived here as lifelong tools and powerful expressive media across many
domains, not just probability.

2. In contrast to languages such as Fortran or Basic, meaningful Starlogo programs are usually quite
short and Starlogo has “low threshold” (i.e., easy for novices to write meaningful programs) as a
primary language design criterion (Papert, 1980; Resnick, 1991).

[13]Or as some interviewees saw it, each process leads to a different "meaning" of random.

[14]A positivist or strict formalist critic might object that in fact the notion of randomness has been replaced
by a more precise and technical notion. In practice, however, the new ideas coexist with the old and take
much of their sustenance from their connections to prior conceptions and other contexts for recognizing
randomness.

[15]The transcripts have been "cleaned up" some (removing pauses, umms a and many interjections) for
clarity of the exposition. Bracketed comments are the author's clarifying remarks.

[16]At this point, Ellie actually wrote down a formal mathematical proof by contradiction. The last line of
the proof was: 2/3 = 3/4 . Contradiction.

[17]The Starlogo procedures are divided into turtle procedures and observer procedures. Turtle procedures
are executed by each turtle in parallel. Observer procedures set up the general environment and summarize
the behavior of turtles.

[18]In this case, each turtle sets itself up at the origin on the circumference of a circle of radius 10.

[19]Ellie did go on and write the code to do this experiment just as a check of her insight. Her new code is
the same as the old code except for a rewrite of the procedure "gen-random-chord".

[20]I chose not to intervene at this juncture and point out that the first experiment Ellie proposed did not
correspond exactly to her first analysis and method of generating chords.

[21]Here is her argument: Choose a circle of radius r and an interval, a, small relative to R. For calculating
convenience, let's say R is large and a is 2. Then the annulus corresponding to very small chords (length
nearly zero) has area equal to p. But the disk corresponding to large chords (length near 2R) has area equal
to p*(2R -1) which is substantially larger.

[22]In Logo, a procedure is "state transparent" if, after its execution, the state of the turtle is unaltered.

[23]In a typical Logo or Starlogo screen, when a turtle goes off the screen to the right or at the top, it
reappears at the left or bottom.

[24]As was mentioned in section 3.1, this is Ellie's version of the question debated by mathematicians as to
the applicability of the principle of insufficient reason.

[25]These three responses are equivalent to

1. giving up on the paradox,
2. asserting that the paradox is in fact a contradiction in the domain and thus invalidating the domain, or
3. refusing the paradox.
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[26]Reflecting on the intellectual development of historical figures in the origins of probability can be very
encouraging as they are often seen to be confused about the very same things. As was noted in section 3.1,
Ellie's concerns and confusions paralleled those of leading mathematicians over the last hundred years.

[27]The paradox will not be resolved though getting the received solution of experts. The expert solution
relies on intermediate mental constructs that must be built by the learner. If instead, learners "dive in" to the
paradox (as the experts did long ago), they will construct a richer intuitive conception of the key ideas in the
domain.

[28]One of these “Monty Hall” probability paradoxes made newspaper headlines (Tierney, 1991) after
appearing in a column in Parade magazine (Vos Savant, 1991).

[29]As shall be elaborated in section 4.3, the fact of Ellie's getting her insight before running her program
further emphasizes the value of building a model over exploring the outputs of a model.

[30]Again, this was the norm in the Monty Hall family of problems. As soon as the interviewee started to
write down a program for simulating the problem, what was going on became apparent. Often, they didn't
even bother to finish the programs. In contrast, in another paradox discussed in the interviews, the "envelope
paradox", writing a program most often served to instantiate an already held theory and therefore running it
"confirmed" the theory, often prematurely. In effect, the authority of the program sanctioned the solution.
However, in that particular case, a community formed spontaneously to resolve the dilemma. Interviewees
in the study got together and compared their different solutions. Since the interviewees wrote different
programs with different results, the conflict created an opportunity for them to talk about how their
programs encapsulated their theories. This led to more sophisticated critiques of the theories. [For a
discussion of how programs and microworlds can encapsulate theories, see (Edwards, in press)].

[31]More recently, Cohen (1995) has replicated these post-tests and a "very small number" of students do
refer to distributions in their answers.

[32]A case study of two students trying to make sense of a divorce-rate statistic reported in the newspaper is
presented in Wilensky (1993). In order to make sense of the statistic, they designed and critiqued many
different models.
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