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0. Introduction

Leibniz homology was introduced by Loday as a noncommutative analog of Lie
algebra homology. It can be de�ned for a broader class of algebras called Leibniz
algebras which are nonassociative algebras satisfying the Leibniz identity. Loday and
Pirashvili [15] studied the second Leibniz homology group of the Lie algebra sln(S) and
the Steinberg Lie algebra stn(S), where S is an associative algebra over a commutative
ring k. They proved that if S is free as a k-module and n ≥ 5, then

HL2(sln(S)) ∼= H1(S) and HL2(stn(S)) ∼= ImB (0.1)

where B : HC0(S)→ H1(S) is the Connes operator. To do this, they introduced the non-
commutative Steinberg algebra stln(S) and consider the central extension � : stln(S)→
sln(S) in the category of Leibniz algebras.
In this paper, we will work on the elementary unitary Lie algebras eun(R;−; )

and eu(ġ;R;−), where (R;−) is an associative (and commutative in the later case)
involutive algebra and ġ is a �nite dimensional split simple Lie algebra, as was done
in [9, 3]. Toward the end, we introduce the noncommutative Steinberg unitary algebra
and decompose the Hochschild homology of R by using the involution – on R. We
then go on to derive some consequences. For example, we will recover (0.1) for n ≥ 4
and 1

2 ∈ k, or n = 3 and 1
6 ∈ k, and HL2(g ⊗k S) = 
1S|k as well, where g is ġ or ġc

(the compact form of ġ) and S is an associative commutative algebra over k.
The paper is organized as follows. In Section 1, we recall some basics on Leibniz

algebras, Leibniz homology and various homology theories related to associative al-
gebras. The main reference is the book [14]. Then we study the unitary Lie algebras
eun(R;−; ) in Section 2 and eu(ġ;R;−) in Section 3.
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1. Basics

Let k be a commutative ring. A Leibniz algebra L over k is a k-module with a
k-bilinear map, called bracket,

[·; ·] : L× L → L

satisfying the Leibniz identity:

[x; [y; z]] = [[x; y]; z]− [[x; z]; y] (1.1)

for all x; y; z ∈ L. We sometimes write the Leibniz identity as follows:

[[x; y]; z] = [x; [y; z]] + [[x; z]; y]: (1.2)

Clearly, Lie algebras are Leibniz algebras.
Suppose that L is a Leibniz algebra over k. For any z ∈ L, we de�ne adz ∈ Endk L

by

(adz)x = −[x; z]; for all x ∈ L: (1.3)

It follows from (1.2) that

(adz)[x; y] = [(adz)x; y] + [x; (adz)y] (1.4)

for all x; y ∈ L. This says that adz is a derivation of L. If L is a Lie algebra, then adz
is just an inner derivation of L de�ned as usual.
For any Leibniz algebra L there is an associated Lie algebra LLie = L=〈[x; x]〉 where

〈[x; x]〉 is the two-sided ideal generated by all [x; x]; x ∈ L.
Let L be a Leibniz algebra over k. Consider the tensor product modules,

L⊗n = L⊗k · · · ⊗k L︸ ︷︷ ︸
n

;

one has the boundary map: dn : L⊗n → L⊗(n−1) de�ned by

dn(g1 ⊗ · · · ⊗ gn)

=
∑

1≤i¡j≤n

(−1) j+1g1 ⊗ · · · ⊗ gi−1 ⊗ [gi; gj]⊗ gi+1 ⊗ · · · ⊗ ĝj ⊗ · · · ⊗ gn;

where ĝj indicates that the term gj is omitted. One can show that d2 = 0 and the
complex (L⊗n; d) (L0 = k and d1 = 0) gives the Leibniz homology HL∗(L) of the
Leibniz algebra L. Note that only the Leibniz identity is needed to guarantee d2 = 0.
This is actually the motivation for de�nitions of Leibniz algebras and their homology
(see [14, 15]).
Let L be a Leibniz algebra over k. The center of L is de�ned to be {z ∈ L : [z; L] =

[L; z] = (0)}. L is called perfect if [L; L] = L. A central extension of L is a pair (L̂; �)
where L̂ is a Leibniz algebra and � : L̂ → L is a surjective homomorphism such that
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ker � lies in the center of L̂ and the exact sequence 0 → ker � → L̂ → L → 0 splits
as k-modules. The pair (L̂; �) is a universal central extension of L if for every central
extension (L̃; �) of L there is a unique homomorphism  : L̂ → L̃ for which � ◦  = �.
So the universal central extension is unique, up to isomorphism.
The following result is also known.(see [15]).

Proposition 1.1. The universal central extension of a Leibniz algebra L exists if and
only if L is perfect. If (L̂; �) is the universal central extension of L; then HL2(L) ∼=
ker �.

Let R be an associative k-algebra with identity 1. Consider the tensor product
modules over k,

R⊗(n+1) = R⊗k R⊗ · · · ⊗k R︸ ︷︷ ︸
n+1

;

one has the Hochschild boundary: dn : R⊗(n+1) → R⊗n de�ned by

dn(a0 ⊗ a1 ⊗ · · · ⊗ an)

=

(
n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

)
+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1;

and knows that d2 = 0 where R⊗0 = k and d0 = 0. The complex (R⊗(∗+1); d) gives
the Hochschild homology H∗(R) of the associative algebra R.
Throughout the rest of this paper; we assume that 1

2 ∈ k.
Suppose that R is, in addition, equipped with an (anti)-involution −, we write (R;−)

and denote R+ = {a ∈ R : �a = a} and R = {a ∈ R : �a = −a}.
Let Dn+1 = 〈tn+1; ln+1 | l2n+1 = tn+1n+1 = 1; ln+1tn+1ln+1 = t−1n+1〉 be the dihedral group

and de�ne an action on the k-module R⊗(n+1) as follows:

ln+1(a0 ⊗ a1 ⊗ · · · ⊗ an) = (−1)n(n+1)=2 �a0 ⊗ �an ⊗ �an−1 ⊗ · · · ⊗ �a1;

tn+1(a0 ⊗ a1 ⊗ · · · ⊗ an) = (−1)nan ⊗ a0 ⊗ · · · an−1

for ai ∈ R; 0 ≤ i ≤ n. Let

Cn(R) =
R⊗(n+1)

Im(tn+1 − 1) ;

Dn(R) =
R⊗(n+1)

Im(ln+1 − 1) + Im(tn+1 − 1) ;

−1Dn(R) =
R⊗(n+1)

Im(ln+1 + 1) + Im(tn+1 − 1) ;

Ln(R) =
R⊗(n+1)

Im(ln+1 − 1) and −1Ln(R) =
R⊗(n+1)

Im(ln+1 + 1)
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be quotient modules. The Hochschild boundary d induces boundary maps for each
of the �ve complexes (C∗(R); d); (D∗(R); d); (−1D∗(R); d); (L∗(R); d) and (−1L∗(R); d),
the corresponding homology is denoted by HC∗(R); HD∗(R);−1HD∗(R); H+

∗ (R) and
H−

∗ (R), respectively. The �rst three are called the cyclic, dihedral and skew-dihedral
homology, respectively. For more about this, see [13, 14].
It is easy to see that

HC0(R) =
R

[R; R]
; HD0(R) =

R
[R; R] + R

and −1HD0(R) =
R

[R; R] + R+
:

For our use we rewrite H1(R); H−
1 (R); HC1(R) and −1HD1(R) as was done in [9].

Proposition 1.2. Let 〈R; R〉 = (R⊗k R)=I be the quotient module; where I is the
submodule of R⊗k R generated by elements ab⊗ c− a⊗ bc+ ca⊗ b = d2(a⊗ b⊗ c)
for all a; b; c ∈ R. Set 〈a; b〉 = a⊗ b+ I; then

H1(R) =

{∑
i

〈ai; bi〉|
∑

i

(aibi − biai) = 0

}
is a submodule of 〈R; R〉.
Proposition 1.3. Let 〈R; R〉c = (R⊗k R)=Ic be the quotient module; where Ic is the
submodule of R ⊗k R generated by elements ab ⊗ c − a ⊗ bc + ca ⊗ b; a ⊗ b + b ⊗ a
for all a; b; c ∈ R. Set 〈a; b〉c = a⊗ b+ Ic; then

HC1(R) =

{∑
i

〈ai; bi〉c|
∑

i

(aibi − biai) = 0

}
is a submodule of 〈R; R〉c.
Now, consider (R;−). It is easy to see that a = 0 (mod R+) if and only if a = �a.

Proposition 1.4. Let 〈R; R〉− = (R⊗k R)=I− be the quotient module; where I− is the
submodule of R ⊗k R generated by elements a ⊗ b − �a ⊗ �b; ab ⊗ c − a ⊗ bc + ca ⊗ b
for all a; b; c ∈ R. Set 〈a; b〉− = a⊗ b+ I−; then

H−
1 (R) =

{∑
i

〈ai; bi〉−|
∑

i

aibi − biai =
∑

i

(aibi − biai)

}

is a submodule of 〈R; R〉−.
Proposition 1.5. Let 〈R; R〉d = (R⊗k R)=Id be the quotient module; where Id is the
submodule of R⊗kR generated by elements a⊗b− �a⊗ �b; ab⊗c−a⊗bc+ca⊗b; a⊗b+b⊗a
for all a; b; c ∈ R. Set 〈a; b〉d = a⊗ b+ Id; then

−1HD1(R) =

{∑
i

〈ai; bi〉d|
∑

i

aibi − biai =
∑

i

(aibi − biai)

}
is a submodule of 〈R; R〉d.
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We denote the quotient maps from R⊗k R to 〈R; R〉; 〈R; R〉c; 〈R; R〉− and 〈R; R〉d by
q; qc; q− and qd, respectively. We also denote the natural map 〈R; R〉 → 〈R; R〉c (or
〈R; R〉− → 〈R; R〉d) by p (or p−). Clearly,

p ◦ q = qc and p− ◦ q− = qd: (1.6)

Remark 1.6. If R is commutative, then H1(R) = 
1R|k , the K�ahler di�erentials (see
[14] for the de�nition). Moreover, when the involution − is trivial, one has

H−
1 (R) = H1(R) = 
1R|k :

The following result is an analogue of Proposition 1.13 of [9]

Proposition 1.7. Assume that S is an associative k-algebra with identity. Let Sop be
its opposite algebra. Let R = (S ⊕ Sop; ex); where ex = − and (s; s′) = (s′; s); then
’− : 〈R; R〉− → 〈S; S〉 given by

’−(〈(a1; a2); (b1; b2)〉−) = 〈a1; b1〉+ 〈a2; b2〉
is an isomorphism and H−

1 (R) ∼= H1(S):

Suppose that −1 has no square root in k. Let S be an associative commutative k-
algebra with identity, and R = S ⊗k k(i) = S ⊕ iS, where i = √−1. De�ne − : R → R
by a+ ib = a − ib for all a; b ∈ S, then R is an associative commutative k-algebra
equipped with an involution −. In this case we claim

Proposition 1.8. H−
1 (R) ∼= H1(S):

Proof. De�ne f : R⊗ R → H1(S) by

f((a1 + ib1)⊗ (a2 + ib2)) = 〈a1; a2〉 − 〈b1; b2〉:
Then one can show that the following elements:

(a1 + ib1)⊗ (a2 + ib2)− (a1 − ib1)⊗ (a2 − ib2);
(a1 + ib1)(a2 + ib2)⊗ (a3 + ib3)− (a1 + ib1)⊗ (a2 + ib2)(a3 + ib3)
+(a3 + ib3)(a1 + ib1)⊗ (a2 + ib2);

lie in the kernel of f, therefore f induces a surjective homomorphism

f : H−
1 (R)→ H1(S):

In H−
1 (R), we have 〈ib; a〉− = 0 and 〈a; ib〉− = 0. Next,
〈i · a; ib〉− − 〈i; a · ib〉− + 〈ib · i; a〉− = 0;

which yields

〈ia; ib〉− − 〈i; abi〉− − 〈b; a〉− = 0: (1.7)
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Also, 〈a; 1〉− = 0, and 〈ab · i; i〉− − 〈ab; i · i〉− + 〈i · ab; i〉− = 0 give us 〈abi; i〉− = 0:
It then follows from

〈i · ab; i〉− − 〈i; ab · i〉− + 〈i · i; ab〉− = 0;

that 〈i; abi〉− = −〈1; ab〉−. From (1.7) we have

〈ia; ib〉− = 〈i; abi〉− + 〈b; a〉− = −〈1; ab〉− + 〈b; a〉− = −〈a; b〉−

and

〈a1 + ib1; a2 + ib2〉− = 〈a1; a2〉− − 〈b1; b2〉− :

Now, we de�ne g : S ⊗ S → H−
1 (R) by g(a⊗ b) = 〈a; b〉−. Obviously, g induces an

epimorphism g : H1(S)→ H−
1 (R) such that g(〈a; b〉) = 〈a; b〉−. Then

g ◦ f(〈a1 + ib1; a2 + ib2〉−) = g(〈a1; a2〉 − 〈b1; b2〉)
= 〈a1; a2〉− − 〈b1; b2〉− = 〈a1 + ib1; a2 + ib2〉−;

which shows that g ◦ f = id and that f is also injective.

Next, we want to investigate the kernel of p−.

Lemma 1.9. (i) 〈1; [R; R] + R 〉− = 0: (ii) ker p− = 〈1; R〉−:

Proof. Since

〈b; c〉− − 〈1; bc〉− + 〈c; b〉− = 0; (1.8)

〈c; b〉− − 〈1; cb〉− + 〈b; c〉− = 0;

we have 〈1; bc− cb〉− = 0, for all b; c ∈ R. Also, 〈1; b〉− − 〈1; �b〉− = 0, for all b ∈ R.
So (i) holds.
Assume that p−(u) = 0 for some u ∈ 〈R; R〉−. Since q− is onto, we have u = q−(v)

for some v ∈ R⊗kR. Then qd(v) = p−◦q−(v) = p−(u) = 0 which says that v ∈ ker qd.
Thus,

v =
∑

i

(aibi ⊗ ci − ai ⊗ bici + ciai ⊗ bi) +
∑
j

(dj ⊗ ej + ej ⊗ dj)

for some ai; bi; ci; dj; ej ∈ R. So q−(v) =
∑

j〈dj; ej〉− + 〈ej; dj〉−. It then follows from
(1.8) that

u = q−(v) =
∑
j

〈1; djej〉− = 〈1;
∑
j

djej〉−

as needed.
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Now, we can de�ne

B : HD0(R) =
R

[R; R] + R
→ 〈R; R〉−; (1.9)

by B(a+ [R; R] + R ) = 〈1; a〉−.

Proposition 1.10. ImB = ker p− ⊆H−
1 (R) and we have the following exact sequence

HD0(R)
B−→H−

1 (R)
’−
−→−1HD1(R):

Proof. Clearly, Im B = ker p− ⊆H−
1 (R) and the following sequence is exact:

HD0(R)
B−→〈R; R〉− ’−

−→〈R; R〉d:

Taking restriction gives the desired exact sequence.

Remark 1.11. If R is commutative and the involution - is trivial, then H−
1 (R) = 
1R|k

and Im B = dR are just exact forms in 
1R|k .

Remark 1.12. If (R;−) = (S ⊕ Sop; ex) as in Proposition 1.7, then the following two
exact sequences are isomorphic:

HD0(R)
B−→ H−

1 (R)
p−
−→ −1HD1(R)y ’0

y ’−
y ’1

HC0(S)
B−→ H1(S)

p−→ HC1(S);

where ’1(〈(a1; a2); (b1; b2)〉d) = 〈a1; b1〉c+〈a2; b2〉c (see [9]), ’0((a; b)+[R; R]+R ) =
a+ b+ [S; S] and B is the so-called Connes operator (see [16] or [14]).
To conclude this section, we need a bit more notations.
Let J be the submodule of R⊗k R generated by the following elements:

a⊗ b+ b⊗ a; �ab⊗ c − a⊗ �bc + �ca⊗ b;

(c(ab− ab) + (ba− ba)c)⊗ d

for all a; b; c; d ∈ R. De�ne L(R;−) = (R⊗k R)=J to be the quotient k-module and
write ‘(a; b) = a⊗ b+ J (see [3]). Let r : R⊗k R → L(R;−) be the quotient map.
Now, we introduce a noncommutative analog of L(R;−). Let N be the submodule

of R⊗k R spanned by the following elements:

�ab⊗ c − a⊗ �bc + �ca⊗ b;

(c(ab− ab) + (ba− ba)c)⊗ d; d⊗ (c(ab− ab) + (ba− ba)c)

for all a; b; c; d ∈ R. De�ne N(R;−) = (R⊗k R)=N to be the quotient k-module and
write ‘ (a; b) = a ⊗ b + N . Let r̂ : R ⊗k R → N(R;−) be the quotient map. There
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is a natural map Q : N(R;−) → L(R;−) given by Q(‘ (a; b)) = ‘(a; b) such that
Q ◦ r̂ = r. As Lemma 1.9, one can show that

Lemma 1.13. (i) ‘ (1; [R; R] + R ) = 0: (ii) kerQ = ‘ (1; R):

De�ne P : HD0(R)→ N(R;−) by P(a+ [R; R] + R ) = ‘ (1; a). Then

kerQ = ImP: (1.10)

Remark 1.14. One can further prove that ‘ (1; RR + R R) = 0.

2. Noncommutative Steinberg unitary algebras

Let R be an associative k-algebra with identity. The k-Lie algebra of n× n matrices
with coe�cients in R is denoted by gln(R). For n ≥ 2, the elementary Lie algebra
sln(R) (or en(R)) is the subalgebra of gln(R) generated by the elements eij(a), a ∈ R,
1 ≤ i 6= j ≤ n, where eij are standard matrix units.
For n ≥ 3, the noncommutative Steinberg algebra stln(R) is de�ned to be the

Leibniz algebra over k generated by the symbols Xij(a), a ∈ R, 1 ≤ i 6= j ≤ n, subject
to the relations (see [15]):

a 7→ Xij(a) is a k-linear mapping, (2.1)

[Xij(a); Xjk(b)] = −[Xjk(b); Xij(a)] = Xik(ab); for distinct i; j; k; (2.2)

[Xij(a); Xkl(b)] = 0; for j 6= k; i 6= l; (2.3)

where a; b ∈ R; 1 ≤ i; j; k; l ≤ n. Let � : stln(R;−; ) → sln(R) be the map de�ned by
�(Xij(a)) = eij(a). Then � yields a central extension.
If R is, in addition, equipped with an (anti)-involution −, then the elementary uni-

tary Lie algebra eun(R;−; ) is a subalgebra of gln(R) generated by the elements
eij(a)− i−1j eji( �a), a ∈ R, 1 ≤ i 6= j ≤ n, where  = (1; : : : ; n), i ∈ k×, the
units of k, 1 ≤ i ≤ n.
It is easy to see that eun(R;−; ) has a k-module decomposition

eun(R;−; ) = �0 ⊕
∑

1≤i¡j≤n

⊕�ij ; (2.4)

where �ij = {eij(a)− i−1j eji( �a)|a ∈ R} for 1 ≤ i ¡ j ≤ n and �0 is the subalgebra
of diagonal matrices of eun(R;−; ), which is spanned by the elements

[eij(a)− i−1j eji( �a); eji(b)− j−1i eij( �b)] = eii(ab− ab) + ejj(ba− ba) (2.5)

for a; b ∈ R, 1 ≤ i 6= j ≤ n:
For later use, we consider eu3(R;−; ) when R is commutative and the involution −

is the identity map.
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Lemma 2.1. If  = (1; 1; 1); then

eu3(R;−; ) ∼= k3 ⊗ R;

where k3 is the three-dimensional Lie algebra over k with a basis {x; y; z} and
relations [x; y] = z; [y; z] = x; [z; x] = y:

Proof. The map

e12(a)− e21(a) 7→ x ⊗ a;

e23(a)− e32(a) 7→ y ⊗ a;

e13(a)− e31(a) 7→ z ⊗ a;

gives the isomorphism of two algebras.

Lemma 2.2. If  = (1;−1; 1); then
eu3(R;−; ) ∼= sl2(k)⊗ R

where sl2(k) is the three-dimensional Lie algebra over k with a basis {e; f; h} and
relations [h; e] = 2e; [h; f] = −2f; [e; f] = h:

Proof. The map

e12(a) + e21(a) 7→ 1
2h⊗ a;

e23(a) + e32(a) + e13(a)− e31(a) 7→ e ⊗ a;

e23(a) + e32(a)− (e13(a)− e31(a)) 7→ f ⊗ a;

gives the desired isomorphism.

For n ≥ 3, the noncommutative Steinberg unitary algebra stuln(R;−; ) is de�ned
to be the Leibniz algebra over k generated by the symbols uij(a), a ∈ R, 1 ≤ i 6= j ≤ n,
subject to the relations:

uij(a) = uji(−i−1j �a); (2.6)

a 7→ uij(a) is a k-linear mapping, (2.7)

[uij(a); ujk(b)] = −[ujk(b); uij(a)] = uik(ab); for distinct i; j; k; (2.8)

[uij(a); ukl(b)] = 0; for distinct i; j; k; l; (2.9)

where a; b ∈ R, 1 ≤ i; j; k; l ≤ n. The noncommutative Steinberg unitary algebra is a
noncommutative analog of the Steinberg unitary Lie algebra de�ned in [2].
If all i = 1, we let eun(R;−) and stuln(R;−) denote eun(R;−; ) and stuln(R;−; ),

respectively.
Next, we will see that the noncommutative Steinberg unitary algebra is a general-

ization of the noncommutative Steinberg algebra.
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Proposition 2.3. Let S be an associative algebra with identity. Let (R;−) = (S ⊕
Sop; ex). Then

stln(S) ∼= stuln(R;−):

Proof. First, there is a Leibniz algebra homomorphism

� : stuln(R;−)→ stln(S)

such that �(uij((a; b))) = Xij(a)− Xji(b); for all a; b ∈ S. It is obvious that � is onto.
Also, uij((a; 0)) satis�es the relations (2.1)–(2.3). It follows that there exists a Leibniz
algebra homomorphism �− : stln(S) → stuln(R;−) such that �−(Xij(a)) = uij((a; 0)).
It is easy to see that �− ◦ �(uij((a; b))) = uij((a; b)) which shows that � is one - to -
one.

Remark 2.4. One can similarly show that eun(R;−) ∼= sln(S) as Lie algebras, see for
example [2].
Setting

Tij(a; b) = [uij(a); uji(b)]; (2.10)

for a; b ∈ R; 1 ≤ i 6= j ≤ n. One can check that

[Tij(a; b); uik(c)] = −[uik(c); Tij(a; b)] = uik((ab− ab)c): (2.11)

for a; b; c ∈ R and distinct i; j; k. Using (2.11), we obtain

[Tij(a; b); uij(c)] = −[uij(c); Tij(a; b)] = uij((ab− ab)c + c(ba− ba)): (2.12)

The following proposition is obvious.

Proposition 2.5. Let T :=
∑

1≤i¡j≤n[uij(R); uji(R)]. Then T is a subalgebra of
stuln(R;−; ) containing the center Z of stuln(R;−; ) with [T ; uij(R)] = [uij(R);T ]
⊆ uij(R). Moreover;

stuln(R;−; ) = T ⊕
∑

1≤i¡j≤n

⊕uij(R): (2.13)

Clearly, one has a Leibniz algebra epimorphism

� : stuln(R;−; )→ eun(R;−; ); (2.14)

such that �(uij(a)) = eij(a)− i−1j eji( �a). � restricted to uij(R) maps uij(R) to �ij and
is one to one, for 1 ≤ i ¡ j ≤ n. It then follows that ker �⊆Z:
Next, we will characterize ker �. To do this, we need to understand more about the

subalgebra T of stuln(R;−; ). As Proposition 2.5 in [9], one has

Proposition 2.6. For any a; b; c ∈ R; and distinct i; j; k; we have
(i) Tij(a; b) = Tji( �a; �b);
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(ii) Tij(a; bc) = Tik(ab; c) + Tkj(ca; b);
(iii) Tij(a; 1) + Tji(a; 1) = 0;
(iv) Tij(a; 1) = 0; if a ∈ R+:

Proof. (i) is clear. (ii) follows from the Leibniz identity.
Taking b = c = 1 in (ii), we get

Tij(a; 1) = Tik(a; 1) + Tkj(a; 1) (2.15)

and exchanging j and k in (2.15), we have

Tik(a; 1) = Tij(a; 1) + Tjk(a; 1): (2.16)

Combining (2.15) and (2.16) gives us

Tkj(a; 1) + Tjk(a; 1) = 0 (2.17)

which is (iii). (iv) follows from (i) and (iii).

Let

t(a; b) = T1j(a; b)− T1j(ba; 1); (2.18)

then one easily sees that t(a; b) does not depend on the choices of j.
Now, we can interpret Proposition 2.6 as follows.

Proposition 2.7. For a; b; c ∈ R, the following identities hold:
(i) t(a; b)− t( �a; �b) = 0;
(ii) t(ab; c)− t(a; bc) + t(ca; b) = 0:

Proof. (ii) follows from Proposition 2.6(ii). Also, from Proposition 2.6(ii), we get

Tij(a; b) = Tik(ab; 1) + Tkj(a; b);

Tij(a; b) = Tik(a; b) + Tkj(ba; 1):

So

Tkj(a; b)− Tkj(ba; 1) = Tik(a; b)− Tik(ab; 1): (2.19)

It follows that

t(a; b) =T1j(a; b)− T1j(ba; 1) = Ti1(a; b)− Ti1(ab; 1)

=T1i( �a; �b)− T1i(ab; 1) = T1i( �a; �b)− T1i( �b �a; 1) = t( �a; �b):

So (i) holds true.
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Note that Tij(a; b) is k-bilinear, and so is t(a; b). As Lemma 2.8 in [9], one can
show that

Lemma 2.8. Every element x ∈ T can be written as

x =
∑

i

t(ai; bi) +
∑
2≤j≤n

T1j(cj; 1);

where ai; bi ∈ R, cj ∈ R (i.e., �cj = −cj).

It is easy to see that

�(t(a; b)) = �(T1j(a; b)− T1j(1; ba)) = e11((ab− ba)− (ab− ba)): (2.20)

Then, similarly to the proofs of Lemma 2.30 and Theorem 2.33 in [9], we have

Proposition 2.9.

ker � =

{∑
i

t(ai; bi) |
∑

i

aibi − biai =
∑

i

aibi − biai

}
∼= H−

1 (R):

We know that

� : stuln(R;−; )→ eun(R;−; ) (2.21)

is a central extension. Clearly, stuln(R;−; ) is perfect, so is eun(R;−; ), for n ≥ 3.
Next, we will determine when � yields the universal central extension.

Theorem 2.10. Assume that (R;−) is an associative algebra such that R is a free
k-module. Then

HL2(stuln(R;−; )) =


(0) if n ≥ 5;
N(R;−) if n = 4;
(0) if n = 3 and 1

3 ∈ k:

If n ≥ 5, the theorem can be proved as in Theorem 2.37 of [9].
If n = 3 and 1

3 ∈ k, the theorem can be proved as Theorem 5.18 of [3]. The only
thing is to recall that adz de�ned as in (1.3) is a derivation.
If n = 4, the theorem can be proved as Theorem 6.19 of [3]. We will treat this case

with more details.
Recall that in N(R;−), we have

‘ ( �ab; c)− ‘ (a; �bc) + ‘ ( �ca; b) = 0; (2.22)

‘ ((c(ab− ab) + (ba− ba)c); d) = 0; (2.23)

‘ (d; (c(ab− ab) + (ba− ba)c)) = 0: (2.24)

Next, we collect some identities which can be easily derived from (2.22)–(2.24).

Lemma 2.11. For a; b; c; d ∈ R; we have

‘ (a; b) = ‘ (a; �b); ‘ (a; b) = ‘ ( �a; b); (2.25)
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‘ (ab; c)− ‘ (a; �bc) + ‘ (ac; b) = 0; (2.26)

‘ (a; �bc)− ‘ ( �ba; c)− ‘ ( �ac; b) = 0; (2.27)

‘ (c; (ba− ba)d)− ‘ ((ab− ab)c; d) = 0: (2.28)

Proof. Taking b = c = 1 in (2.23) and (2.24) gives (2.25). Replacing a by �a in (2.22)
and using (2.25) we obtain (2.26). Eqs. (2.27) also follows from (2.22) and (2.25).
Since ba− ba ∈ R , it follows from (2.26) that

‘ (c(ba− ba); d) + ‘ (c; (ba− ba)d) + ‘ (cd; ba− ba) = 0

and so

‘ (c(ba− ba); d) + ‘ (c; (ba− ba)d) = 0: (2.29)

Now (2.28) follows from (2.24) and (2.29).

Let

G = stul4(R;−; ):

Our goal is to show that HL2(G) =N(R;−). One can easily see that G is Z42-graded
Leibniz algebra such that deg(uij(a)) = �i + �j, where �i = (0; : : : ; 1; : : : ; 0) with 1 in
the ith place. Moreover, by Proposition 2.5,

G = stul4(R;−; ) = G0 ⊕
∐

1≤i¡j≤4
G�i+�j ;

where

G0 = T =
∑

1≤i¡j≤4
[uij(R); uji(R)] and G�i+�j = uij(R):

We now de�ne a bilinear bracket on the k-module

Ĝ =N(R;−)⊕ stul4(R;−; )

by

[N(R;−); Ĝ] = [Ĝ;N(R;−)] = (0); (2.30)

[x; y] = the product [x; y] in G for x ∈ G�; y ∈ G�; �+ � 6= �; (2.31)

[u12(a); u34(b)] = ‘ (a; b) = [u34(a); u12(b)]; (2.32)

[u24(a); u13(b)] = −−13 2‘ (a; b) = [u13(a); u24(b)]; (2.33)

and

[u32(a); u14(b)] = −‘ (a; b) = [u14(a); u32(b)]; (2.34)
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where � = �1+�2+�3+�4: Then Ĝ is a Z42-graded algebra with Ĝ0 = G0; Ĝ�i+�j = G�i+�j

and Ĝ� =N(R;−). Moreover, one can check that the following identities hold. These
can be done case by case.

[uij(a); ukl(b)] = [ukl(a); uij(b)] (2.35)

=−[uil(a); ukj(b)] = −k−1j [uik(a); ujl(b)];

[uij(ab); ukl(c)] = [uij(a); ukl( �bc)]− [uij(ac); ukl(b)]; (2.36)

[uij(a); ukl( �bc)]− [uij( �ba); ukl(c)]− [uij( �ac); ukl(b)] = 0; (2.37)

[uij((ab− ab)c + c(ba− ba)); ukl(d)] = 0; (2.38)

[uij(c); ukl((ba− ba)d)]− [uij((ab− ab)c); ukl(d)] = 0 (2.39)

for all a; b; c; d ∈ R.

Proposition 2.12. Ĝ is a Leibniz algebra.

Proof. Since G is a Leibniz algebra, to prove the Leibniz identity in Ĝ it su�ces to
check J (x; y; z) = [x; [y; z]]− [[x; y]; z]+[[x; z]; y] = 0 for deg(x)+deg(y)+deg(z) = �.
We can also assume that deg(x), deg(y) and deg(z) are not equal to �. This leaves
only two possibilities:
Case 1: deg(x) = �i + �j; deg(y) = �k + �l for distinct i; j; k; l, and deg(z) = 0
Case 2: deg(x) = �i + �j; deg(y) = �i + �k ; deg(z) = �i + �l for distinct i; j; k; l.
For Case 1, we only check the following two subcases and omit the other cases

since they are very similar.
When x = uij(a); y = ukl(d); z = Tij(a; b), we have from (2.12) and (2.38),

J (x; y; z) = [[uij(c); Tij(a; b)]; ukl(d)]

= [uij((ab− ab)c + c(ba− ba)); ukl(d)] = 0:

When x = uij(a); y = ukl(d); z = Tik(a; b), we have from (2.11) and (2.39),

[uij(c); [ukl(d); Tik(a; b)] + [[uij(c); Tik(a; b)]; ukl(d)]

= [uij(c); ukl((ba− ba)d)]− [uij((ab− ab)c); ukl(d)] = 0:

For Case 2, we suppose that x = uij(a); y = uik(b); z = uil(c). Then, using (2.35)
and (2.37),

J (x; y; z) = −i−1k [uij(a); ukl( �bc)]− i−1k [ukj( �ba); uil(c)]− i−1j [ujl( �ac); uik(b)]

= −i−1k [uij(a); ukl( �bc)]− i−1k [uil( �ba); ukj(c)]− i−1j [uik( �ac); ujl(b)]

= −i−1k [uij(a); ukl( �bc)] + i−1k [uij( �ba); ukl(c)]

−i−1j (−−1k j[uij( �ac); ukl(b)])
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= −i−1k ([uij(a); ukl( �bc)]− [uij( �ba); ukj(c)]− [uij( �ac); ukl(b)]

= 0;

which completes the proof.

De�ne � : Ĝ → G by �(N(R;−)) = (0) and �|G = id. Then, it follows that (Ĝ; �)
is a central extension of G. We will show that (Ĝ; �) is the universal central extension
of G. To do this, we de�ne a Leibniz algebra G] to be the Leibniz algebra generated
by the symbols u]

ij(a), a ∈ R, 1 ≤ i 6= j ≤ 4 and the k-module N(R;−), subject to
the relations:

(1#) u]
ij(a) = u]

ji(−i−1j �a);

(2#) a 7→ u]
ij(a) is a k-linear mapping,

(3#) [u]
ij(a); u

]
jk(b)] = −[u]

jk(b); u
]
ij(a)] = u]

ik(ab); for distinct i; j; k;

(4#) [N(R;−); u]
ij(a)] = [u

]
ij(a);N(R;−)] = 0; for distinct i; j;

(5#) [u]
12(a); u

]
34(b)] = ‘ (a; b) = [u]

34(a); u
]
12(b)];

(6#) [u]
24(a); u

]
13(b)] = −−13 2‘ (a; b) = [u]

13(a); u
]
24(b)];

(7#) [u]
32(a); u

]
14(b)] = −‘ (a; b) = [u]

14(a); u
]
32(b)];

where a; b ∈ R, 1 ≤ i; j; k ≤ 4. Clearly, there is a unique Leibniz algebra homomor-
phism  : G] → Ĝ such that  (u]

ij(a)) = uij(a). Moreover, as Lemma 6.18 of [3], one
can prove

Lemma 2.13.  : G] → Ĝ is an isomorphism.

Now, we are in the position to prove the following result.

Proposition 2.14. If (R;−) is associative and free over k. Then (Ĝ; �) is the universal
central extension of stul4(R;−; ) and hence HL2(stul4(R;−; )) ∼=N(R;−):

Proof. Suppose that

0 −→ V −→ G̃
�−→stul4(R;−; ) −→ 0

is a central extension of stul4(R;−; ). We must show that there exists a Leibniz algebra
homomorphism � : Ĝ → G̃ so that �◦� = �. Thus, by Lemma 2.13, it su�ces to show
that there exists a Leibniz algebra homomorphism � : G] → G̃ so that � ◦ � = � ◦  .
Using a basis for R, we choose a preimage ũij(a) of uij(a) under �, 1 ≤ i 6= j ≤ 4,

a ∈ R, so that the elements ũij(a) satisfy the relations (1]) and (2]). For distinct i; j; k,
let

[ũij(a); ũjk(b)] = ũik(ab) + vjik(a; b)
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where vj
ik(a; b) ∈ V. Take l =∈ {i; j; k}. Then

[ũli(c); [ũij(a); ũjk(b)]] = [ũli(c); ũik(ab)];

[[ũij(a); ũjk(b)]; ũli(c)] = [ũik(ab); ũli(c)]:

By the Leibniz identity, we obtain

[ũli(c); ũik(ab)] = [ũlj(ca); ũjk(b)] = −[ũik(ab); ũli(c)]: (2.40)

In particular, [ũli(c); ũik(b)] = [ũlj(c); ũjk(b)]: It follows that vilk(c; b) = vjlk(c; b) which
shows that vilk is independent of the choice of i. Setting vlk(c; b) = vilk(c; b), we have

[ũli(c); ũik(b)] = ũlk(cb) + vlk(c; b): (2.41)

Taking c = 1, we have

[ũli(1); ũik(b)] = ũlk(b) + vlk(1; b): (2.42)

Now for l¿k, we replace ũlk(b) by ũlk(b) + vlk(1; b), and rechoose ũkl(b) = −k−1l
ũlk( �b). Then, the new elements ũij(b) still satisfy the relations (1]) and (2]). Moreover,
we have for l ¿ k that

[ũli(1); ũik(b)] = ũlk(b) = −[ũik(b); ũli(1)]: (2.43)

We next check that (2.43) holds for l ¡ k. In fact, using (2.40) and k ¿ l we have

[ũli(1); ũik(b)] = [ũlj(b); ũjk(1)]

= [−l−1j ũjl( �b);−j−1k ũkj(1)] = −l−1k ũkl( �b) = ũlk(b):

It follows from (2.40) and (2.43) that

[ũlj(a); ũjk(b)] = [ũli(1); ũik(ab)] = ũlk(ab) = −[ũjk(b); ũlj(a)] (2.44)

for a; b ∈ R and distinct l; j; k. Thus, the elements ũij(a) satisfy (3]).
Next, for distinct i; j; k; l,

[ũij(ab); ũkl(c)] = [[ũik(a); ũkj(b)]; ũkl(c)] (2.45)

= −k−1j [ũik(a); ũjl( �bc)] + [ũil(ac); ũkj(b)]:

Meanwhile,

[ũij(ab); ũkl(c)] = [[ũil(a); ũlj(b)]; ũkl(c)] (2.46)

= −[ũil(a); ũkj(cb)] + k−1j [ũik(a �c); ũjl( �b)]:

Taking b = c = 1 in (2.45) and (2.46) and adding together gives us

2[ũij(a); ũkl(1)] = 0: (2.47)

But then taking b = 1 in (2.45), we get

[ũij(a); ũkl(c)] = −k−1j [ũik(a); ũjl(c)]; (2.48)
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while taking b = 1 in (2.46), we obtain

[ũij(a); ũkl(c)] = −[ũil(a); ũkj(c)]: (2.49)

It follows from (2.48) and (2.49) that (2.45) becomes

[ũij(ab); ũkl(c)] = [ũij(a); ũkl( �bc)]− [ũij(ac); ũkl(b)]: (2.50)

Also, interchange i and k, j and l in (2.48) respectively, we have

[ũkl(a); ũij(c)] = −i−1l [ũki(a); ũlj(c)] (2.51)

= −k−1j [ũik( �a); ũjl( �c)] = [ũij( �a); ũkl( �c)]:

Finally, we have, using (2.12),

[ũij((ab− ab)c + c(ba− ba)); ũkl(d)] = [[T̃ij(a; b); ũij(c)]; ũkl(d)] = 0 (2.52)

and

[ũkl(d); ũij((ab− ab)c + c(ba− ba))] = [ũkl(d); [T̃ij(a; b); ũij(c)]] = 0; (2.53)

where T̃ij(a; b) = [ũij(a); ũji(b)].
Taking b = c = 1 in (2.52) and (2.53) gives us

[ũij(a− �a); ũkl(d)] = 0 and [ũkl(d); ũij(a− �a)] = 0; (2.54)

hence (2.51) becomes

[ũkl(a); ũij(b)] = [ũij(a); ũkl(b)]: (2.55)

Now, put

‘̃ (a; b) = [ũ12(a); ũ34(b)]

for a; b ∈ A. Then we have

‘̃ (ab; c) = ‘̃ (a; �bc)− ‘̃ (ac; b);

‘̃ ((ab− ab)c + c(ba− ba); d) = 0;

‘̃ (d; (ab− ab)c + c(ba− ba)) = 0

for a; b; c; d ∈ R.
Thus, the elements ũij(a) and ‘̃ (a; b) satisfy the relations (1])–(7]), and so there

exists a Leibniz algebra homomorphism � : G] → G̃ so that �(u]
ij(a)) = ũij(a) for 1 ≤

i 6= j ≤ 4 and a ∈ R. But then � ◦ �(u]
ij(a)) = �(uij(a)) = uij(a) and � ◦  (u]

ij(a)) =
�(uij(a)) = uij(a); and thus � ◦ � = � ◦  as required.

Let G = stuln(R;−; ), then the associated Lie algebra GLie = stun(R;−; ), the
Steinberg unitary Lie algebra (see [3, 9] or [3]). Then we have
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Proposition 2.15. If (R;−) is associative and free over k. Then

HL2(stun(R;−; )) =


ImB if n ≥ 5;
ImB ⊕ Im P if n = 4;
ImB if n = 3 and 1

3 ∈ k:

Now, consider (R;−) = (S ⊕ Sex; ex). Let c = (1;−1) ∈ R. Then �c= − c, c
is invertible and lies in the center of R. Thus (2.23) says that ‘ (a; b) = 0 for all
a; b ∈ R. So N(R;−) = (0): Also, by Propositions 1.7, 2.3 and Remark 1.12, we get
the following result which was due to Loday and Pirashvili [15] for n ≥ 5.

Corollary 2.16. If S is an associative algebra and free over k. Then (stln(S); �)
is the universal central extension of sln(S). Moreover; HL2(sln(S)) = H1(S) and
HL2(stn(S)) = ImB if n ≥ 4 or if n = 3 and 1

3 ∈ k.

Remark 2.17. If R is commutative, then we have the universal central extension

0→ 
1R|k → stl(R)→ sl(R)→ 0;

which is an exact sequence of Leibniz algebras, where stl(R) = stl∞(R) and sl(R) =
sl∞(R). In the paragraph after (2.9) in [6], Bloch indicated the following exact
sequence of k-modules:

0→ 
1R|k → tSt (R)→ sl(R)→ 0

and pointed out that tSt (R) does not have a natural Lie algebra structure. However, it
now becomes clear that tSt (R) ∼= stl(R) has a Leibniz algebra structure.

3. Analogues of noncommutative Steinberg unitary algebras of other types

In this section we assume that Q⊆ k, where Q is the rational �eld.
Let ġ be a �nite dimensional split simple Lie algebra over k. It is well-known

that ġ has a Chevalley basis {e�; h�; | � ∈ �} (see [7] or [10]), where � is the root
system of ġ with a base � = {�1; : : : ; �l} and l is the rank of ġ (or �), satisfying
[h�; h�] = 0; [h�; e�] = �(h�)e�; [e�; e−�] = h�; [e�; e�] = N�;�e�+�; where �; � ∈ �, if
�+ � =∈ �, we set N�;� = 0.
One also has a Chevalley involution � (see [7] or [10]), �(e�) = −e−�. Then one

has (see [7]),

N�;� = −N�;� = −N−�;−� (3.1)

for all �; � ∈ �:
Throughout this section, we will �x the Chevalley basis {e�; h�; | � ∈ �} and the

Chevalley involution � chosen as above. Assume that R is an associative commutative
k-algebra with identity, equipped with an involution −.
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In the k-Lie algebra ġ⊗R, we write x(a) = x⊗ a. Let eu(ġ;R;−) be the subalgebra
of ġ ⊗ R generated by the elements e�(a)− e−�( �a); � ∈ �; a ∈ R:
If �± � 6= 0; then by using the Chevalley basis and (3.1),
[e�(a)− e−�( �a); e�(b)− e−�( �b)] (3.2)

= N�;�(e�+�(ab)− e−�−�( �a �b)) + N−�;�(e�−�(a �b)− e−�+�( �ab)):

Also, it is easy to see that eu(ġ;R;−) has a k-module decomposition:

eu(ġ;R;−) = �0 ⊕
∑
�∈�+

⊕��; (3.3)

where �� = {e�(a)− e−�( �a)|a ∈ R}; for � ∈ �+, �+ is the set of positive roots and
�0 is the subalgebra which is spanned by the elements

[e�(a)− e−�( �a); e−�(b)− e�( �b)] = h�(ab− �a �b) (3.4)

for a; b ∈ R:
For l ≥ 2, stul(ġ;R;−) is de�ned to be the Leibniz algebra over k generated by the

symbols u�(a); � ∈ �; a ∈ R, subject to the relations:

u�(a) = u−�(− �a); (3.5)

a 7→ u�(a) is a k-linear map, (3.6)
[u�(a); u�(b)] = −[u�(b); u�(a)] (3.7)

= N�;�u�+�(ab) + N−�;�u�−�(a �b)

for �± � 6= 0; �; � ∈ �; a; b ∈ R:
By analogy with the unitary case in Section 2 we call this the noncommutative

Steinberg unitary algebra of (ġ; R;−).
Now let H�(a; b) = [u�(a); u−�(b)]. As Lemma 3.9 in [9], one can show that

Lemma 3.1. [H�(a; b); u�(c)] = −[u�(c); H�(a; b)] = �(h�)u�((ab− ab)c):

Clearly, we have a surjective homomorphism

� : stul(ġ;R;−)→ eu(ġ;R;−);
given by �(u�(a)) = e�(a)− e−�( �a):

Proposition 3.2. H :=
∑

�∈�+[u�(R); u�(R)] is a subalgebra of stul(ġ;R;−) with
[H ; u�(R)] = [u�(R);H]⊆ u�(R): Moreover;

stul(ġ;R;−) = H ⊕
∑
�∈�+

⊕u�(R)

and ker � is contained in the center of stul(ġ;R;−).
As in Section 2, we further analyze the structure of H .

Proposition 3.3. Let �; � ∈ �; suppose �+ � ∈ �; then
(i) H�(a; b) = H−�( �a; �b);
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(ii) N�;�H�+�(ab; c) = N�;−�−�H�(a; bc) + N�;−�−�H−�(ac; b);
(iii) H−�(a; 1) + H�(a; 1) = 0;
(iv) H�(c; 1) = 0; for c ∈ R+

for a; b; c ∈ R.

Proof. (i) is clear. (ii) follows from the Leibniz identity.
Taking b = c = 1 in (ii), we have

N�;�H�+�(a; 1) = N�;−�−�H�(a; 1) + N�;−�−�H−�(a; 1): (3.8)

Note that � = (�+ �) + (−�). It follows from (3.8) that

N�+�;−�H�(a; 1) = N−�;−�H�+�(a; 1) + N�+�;−�H�(a; 1): (3.9)

Adding (3.8) and (3.9) together, we obtain

N�;−�−�(H−�(a; 1) + H�(a; 1)) = 0

which yields (iii). It then follows that

H�( �a+ a; 1) = 0; (3.10)

which is (iv).

Set h�(a; b) = H�(a; b)− H�(ab; 1).
If �; �; �+ � ∈ �; then by taking b = 1 in Proposition 3.3(ii), we have

N�;�H�+�(a; c) = N�;−�−�H�(a; c) + N�;−�−�H−�(ac; 1): (3.11)

Taking c = 1 in Proposition 3.3(ii), we get

N�;�H�+�(ab; 1) = N�;−�−�H�(a; b) + N�;−�−�H−�(a; b): (3.12)

Letting b = c in (3.12), and comparing (3.11) with (3.12), we obtain

N�;�(H�+�(a; c)− H�+�(ac; 1)) = −N�;−�−�(H−�(a; c)− H−�(ac; 1)): (3.13)

Exchanging � and � in (3.13) we get

N�;�(H�+�(a; c)− H�+�(ac; 1)) = −N�;−�−�(H−�(a; c)− H−�(ac; 1));

and so

N�;−�−�h−�(a; c) = −N�;−�−�h−�(a; c); (3.14)

Replacing a by ab in (3.8), gives us

N�;�H�+�(ab; 1) = N�;−�−�H�(ab; 1) + N�;−�−�H−�(ab; 1): (3.15)

Comparing (3.12) and (3.15), we obtain

N�;−�−�h�(a; b) + N�;−�−�h−�(a; b) = 0: (3.16)
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From (3.14), (3.16) and (i), we have

h�(a; b) = h−�(a; b) = h�( �a; �b): (3.17)

Thus, we have

Proposition 3.4. If � ∈ �; then for a; b; c ∈ R; the following identities hold:
(i) h�(a; b)− h�( �a; �b) = 0;
(ii) h�(ab; c)− h�(a; bc) + h�(ca; b) = 0:

Note that H�(a; b) is k-bilinear, and so is h�(a; b). As Lemma 2.8, one has

Lemma 3.5. Every element x ∈ H can be written as

x =
∑

i

h�1 (ai; bi) +
l∑

j=1

H�j (1; cj);

where ai; bi ∈ R, cj ∈ R :

It is easy to see that �(h�1 (a; b)) = 0: Moreover, we have the following result whose
proof is similar to the proofs of Proposition 3.34 and Theorem 3.35 in [9].

Proposition 3.6. ker � = {∑i h
�1 (ai; bi) | ai; bi ∈ R} ∼= H−

1 (R):

We know that � : stul(ġ;R;−) → eu(ġ;R;−) is a central extension. We will de-
termine when � yields the universal central extension. Towards the end, we set (see
[9])

Assumption 3.7. There exists an element e ∈ R such that �e = −e; and e is invertible.

With Assumption 3.7, we have, by using Lemma 3.1

[H�(e; 1); H�(e; 1)] = [H�(e; 1); [u�(e); u−�(1)]] (3.18)

= [[H�(e; 1); u�(e)]; u−�(1)]− [[H�(e; 1); u−�(1)]; u�(e)]

= [�(h�)u�(2e2); u−�(1)] + [�(h�)u−�(2e); u�(e)]

= 2�(h�)H�(e2; 1) + 2�(h�)H−�(e; e)

= 2�(h�)H−�(e; e)

as e2 ∈ R+ and H�(e2; 1) = 0. Also, by Lemma 3.1 again, we have

[u�(a); H−�(e; e)] = 0 (3.19)

for all a ∈ R.
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Now, we can prove the following theorem:

Theorem 3.8. If (R;−) is an associative commutative algebra satisfying Assumption
3.7 and R is a free k-module; then HL2(stul(ġ;R;−)) = (0):

Proof. Suppose that the following is a central extension,

0 −→ V −→ L �−→stul(ġ;R;−) −→ 0:

Let ũ�(a) be the preimage of u�(a) in L under � chosen as follows. It su�ces to
choose ũ�(a) for � ∈ �+ and a ∈ {r�}�∈� which is a basis of R, and then extend our
choices to all a ∈ R and � ∈ �+ by linearity and (3.5).
Let H̃ �(a; b) = [ũ�(a); ũ−�(b)]. Recall that e is �xed in Assumption 3.7, then by

Lemma 3.1, we have

[ũ�(e−1a); H̃ �(e; 1)] = −4ũ�(a) + v�(a);

for some v�(a) ∈ V . Replacing ũ�(a) by ũ�(a)− v�(a)=4; for � ∈ �+, then using (3.5)
get ũ�(a) for � ∈ −�+. So we get for a ∈ R,

[ũ�(e−1a); H̃ �(e; 1)] = −4ũ�(a): (3.20)

Now, we claim

[ũ�(a); H̃−�(e; e)] = 0: (3.21)

Indeed, by (3.19), we have

0 = [[ũ�(e−1a); H̃−�(e; e)]; H̃ �(e; 1)]

= [ũ�(e−1a); [H̃−�(e; e); H̃ �(e; 1)]] + [[ũ�(e−1a); H̃ �(e; 1)]; H̃−�(e; e)]

= −4[ũ�(a); H̃−�(e; e)];

as [H̃−�(e; e); H̃ �(e; 1)] ∈ V .
From (3.20), we have

[[ũ�(e−1a); H̃ �(e; 1)]; H̃ �(e; 1)] = −4[ũ�(a); H̃ �(e; 1)]:

By the Leibniz identity, (3.18) and (3.21), the left-hand side is

[ũ�(e−1a); [H̃ �(e; 1); H̃ �(e; 1)]] + [[ũ�(e−1a)]; H̃ �(e; 1)]; H̃ �(e; 1)]

= [ũ�(e−1a); 2�(h�)H̃−�(e; e)] + [−�(h�)ũ�(2a); H̃ �(e; 1)] = 8�(h�)ũ�(ea):

So we have

[ũ�(a); H̃�(e; 1)] = −2�(h�)ũ�(ea): (3.22)

Note that ũ�(a) satis�es the relations (3.5) and (3.6). As in the proof of Theorem
3.45 of [9], using (3.22), one can show that ũ�(a) satis�es the relation (3.7). The proof
is thus complete.
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Let S be an associative commutative k-algebra with identity. Suppose that (−1) has
no square root in k. De�ne R = S ⊗k k(i) = S ⊕ iS with involution a+ ib = a − ib,
where i =

√−1, then R is a k-algebra equipped an involution −. So eu(ġ;R;−) is a
k-Lie algebra generated by

e�(a)− e−�( �a) = (e� − e−�)⊗ a;

e�(ia) + e−�(ia) = i(e� + e−�)⊗ a

for all a ∈ S, � ∈ �: Evidently, eu(ġ;R;−) = ġc ⊗k S where ġc is a k-Lie algebra
generated by e� − e−� and i(e� + e−�). If k = R, the �eld of real numbers, then ġc is
nothing but the compact form of ġ. Note that e =

√−1 satis�es Assumption 3.7.

Corollary 3.9. HL2(ġc ⊗k S) = 
1S|k :

Proof. The rank l (of ġ) ≥ 2 case follows from Theorem 3.8 and Proposition 1.8
while the rank l = 1 case follows from Lemma 2.1, Proposition 2.9 and Theorem
2.10.

Next, let S be an associative commutative algebra over k and take (R;−) = (S ⊕
Sop; ex), one has eu(ġ;R;−) ∼= ġ ⊗ S. Note that e = (1;−1) ∈ R satis�es Assumption
3.7.

Corollary 3.10. HL2(ġ ⊗k S) ∼= 
1S|k .

Proof. The rank l ≥ 2 case follows from Theorem 3.8 and Proposition 1.7 while the
rank l = 1 case follows from Lemma 2.2, Proposition 2.9 and Theorem 2.10.
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