This Volume I elucidates the basic principles involved in the analysis and design of Elementary Reinforced Concrete Structures. The book begins with an introduction to concrete technology and continues with chapters on design of beams, slabs, columns, foundations, retaining walls, etc. These chapters are based on the Limit State Method following latest revision of IS : 456-2000. A few computer programmes to design a section for flexure are introduced. It also includes chapters on formwork and detailing of reinforcements.

The salient features of the book are:

* Simple, lucid and easy language
* Step-by-step treatment
* Exposition to practical problems

This book in its 24 chapters now contains:

* 500 Self explanatory and neat diagrams with excellent detailing
* 228 Fully-solved examples
* 257 Unsolved examples with answers and questions at the end of chapters
* 150 Useful tables
* 9 Computer programmes
* 235 Short questions with answers is given in APPENDIX A.

It is hoped that the book should be extremely useful to the Civil Engineering and Architecture students preparing for Degree Examinations of all the Indian Universities, Diploma Examinations conducted by various Boards of Technical Education, Certificate Courses, as well as for the A.M.I.E., U.P.S.C., G.A.T.E. and other similar competitive and professional Examinations.
Chapter 1 INTRODUCTION
1-1. Structural design—Role of a structural engineer
1-2. Reinforced concrete
1-3. Structural elements
1-4. Loads on structure
1-5. Ductility versus brittleness
1-6. Strength and serviceability
1-7. Methods of design
1-8. Codes of practice
1-9. Adaptation of SI units

QUESTIONS I

Chapter 2 PROPERTIES OF MATERIALS
2-1. Constituents of concrete
CEMENT
2-2. General
2-3. Manufacture of Portland cement
2-4. Basic chemistry of cement
2-5. Chemical properties of cement
2-6. Hydration of cement
2-7. Types of cement
2-8. Selection of cement for production of concrete
2-9. Tests for cement
2-10. Fineness test
2-11. Consistency of standard cement paste
2-12. Test for setting times
2-13. Soundness test
2-14. Autoclave expansion
2-15. Density test
2-16. Test for compressive strength
2-17. Heat of hydration test
2-18. Storing of cement
AGGREGATES
2-19. Introductory
2-20. Aggregate size
2-21. Fine and coarse aggregate
2-22. Particle shape
2-23. Surface texture
2-24. Strength of aggregate
2-25. Specific gravity
2-26. Bulk density
2-27. Water absorption and surface moisture
2-28. Bulking of sand
2-29. Deleterious substances in aggregates
2-30. Soundness of aggregate
2-31. Alkali-aggregate reaction
2-32. Sieve analysis
2-33. Standard grading
2-34. Use of grading curves
WATER
2-35. Water for mixing concrete
CHEMICAL ADMIXTURES
2-36. Admixtures
REINFORCEMENT
2-37. Steel as reinforcement
2-38. Types of reinforcement
2-39. Mild steel bars
2-40. Cold Twisted Deformed (CTD) bars
2-41. Thermo-mechanically treated (TMT) bars
2-42. Corrosion-resistant steel
2-44. Bending and fixing of bars
2-45. Requirements for reinforcing bars
2-46. Welding of reinforcement
2-47. General notes for site engineers

QUESTIONS II
EXAMPLES II

Chapter 3 STRUCTURAL CONCRETE
3-1. Proportioning of ingredients
3-2. Measurement of materials
3-3. Mixing and placing of concrete
3-4. Compaction
3-5. Curing
3-6. Formwork for R.C.C. members
3-7. Workability
3-8. Factors influencing workability
3-9. Strength of concrete and water-cement ratio
3-10. Compressive strength of concrete
3-11. Tensile strength of concrete
3-12. Non-destructive tests
3-13. Stress-strain behaviour of concrete under short term loads
3-14. Short term static modulus of elasticity
3-15. Shrinkage
3-16. Creep
3-17. Durability of concrete
3-18. Temperature change
3-19. Concrete quality control
3-20. Sampling and strength tests of concrete
3-21. Statistical analysis of test results
3-22. Standard deviation
3-23. Acceptance criteria

QUESTIONS III
EXAMPLES III

Chapter 4 DESIGN FOR FLEXURE: FUNDAMENTALS
4-1. Introductory
4-2. Review of theory of simple bending
4-3. Practical requirements of an R.C.C. beam
4-4. Size of the beam
4-5. Cover to the reinforcement
4-6. Spacing of bars
4-7. Design requirements of a beam
4-8. Classification of beams
4-9. Effective width of a flanged beam
4-10. Balanced, Under-reinforced and Over-reinforced design
4-11. Cracking moment
4-12. Bending of an R.C.C. beam
4-13. Design methods

Chapter 5 DESIGN FOR FLEXURE: WORKING STRESS METHOD
5-1. Permissible stresses
5-2. Modular ratio
5-3. Design for flexure—assumptions
SINGLY REINFORCED BEAMS
5-4. Derivation of formulae for balanced design
5-5. Transformed area method
5-6. Types of problems
5-7. Analysis of the section
5-8. Design of the section
5-9. Use of design aids

DOUBLY REINFORCED BEAMS
5-10. Introductory
5-11. Derivation of formulae for balanced design
5-12. Transformed area method
5-13. Types of problems
5-14. Use of design aids

FLANGED BEAMS
5-15. Moment of resistance of a singly reinforced flanged beam
5-16. Types of problems
5-17. Doubly reinforced flanged beams
5-18. Slabs

EXAMPLES V
Chapter 6 LIMIT STATE METHOD

6-1. Inelastic behaviour of materials
6-2. Ultimate load theory
6-3. Limit state method
6-4. Limit state of collapse
6-5. Limit state of serviceability
6-6. Characteristic and design values and partial safety factors
6-7. Limit state of collapse: Flexure

SINGLY REINFORCED RECTANGULAR BEAMS
6-8. Derivation of formulae
6-9. General values
6-10. Types of problems
6-11. Failure of R.C.C. beam in flexure
6-12. Code provisions to prevent the brittle failure
6-13. Computer programmes

DOUBLY REINFORCED BEAMS
6-14. Derivation of formulae
6-15. Types of problems
6-16. Use of design aids
6-17. Computer programmes for doubly reinforced rectangular sections

FLANGED BEAMS
6-18. Introductory
6-19. Position of neutral axis
6-20. Derivation of formulae
6-21. Use of design aids
6-22. Doubly reinforced flanged beams
6-23. Sections subjected to reversal of moments
6-24. Computer programmes for flanged sections

Chapter 7 SHEAR AND DEVELOPMENT LENGTH

7-1. Shear in structural members
7-2. Flexure and shear in homogeneous beam
7-3. Shear in reinforced concrete beams – Elastic theory
7-4. Diagonal tension and diagonal compression
7-5. Limit state theory
7-6. Design shear strength of concrete
7-7. Design for shear
7-8. Shear reinforcement in beams
7-9. Practical considerations
7-10. Critical sections for shear
7-11. Design of a complete beam for shear
7-12. Use of design aids
7-13. Shear design of beams with variable depth

DEVELOPMENT LENGTH
7-14. Introductory
7-15. Development length : Pull out test
7-16. Code provision
7-17. Use of bundled bars
7-18. Anchoring reinforcements
7-19. Bearing stresses at bends
7-20. Reinforcement splicing

Chapter 8 DEFLECTION AND CRACKING DEFLECTION

8-1. Introductory
8-2. Span/effective depth ratio
8-3. Control of deflection on site
8-4. Deflection calculations
8-5. Short term deflections
8-6. Long term deflections

CRACKING
8-7. Introductory
8-8. Bar spacing controls
8-9. Calculation of crack width

Chapter 9 SIMPLY SUPPORTED AND CANTILEVER BEAMS

9-1. Design procedure
9-2. Anchorage of bars: Check for development length
9-3. Reinforcement requirements
9-4. Slenderness limits for beams to ensure lateral stability

SIMPLY SUPPORTED BEAMS
9-5. Introductory
9-6. Design S.F. diagram
9-7. Curtailment of bars
9-8. Design of a template
9-9. Design of a lintel

CANTILEVER BEAMS
9-10. Design considerations

EXAMPLES IX

Chapter 10 SIMPLY SUPPORTED AND CANTILEVER SLABS

10-1. Introductory
10-2. Analysis
10-3. One-way spanning slabs
10-4. Simply supported one-way slab
10-5. Detailing of slabs
10-6. Inclined slabs
10-7. Straight slabs having a small length inclined along the span
10-8. Cantilever slab
10-9. Concentrated load on slabs
10-10. Two-way slabs
10-11. Simply supported two-way slabs

EXAMPLES X

Chapter 11 CONTINUOUS BEAMS AND SLABS

CONTINUOUS BEAMS
11-1. Introductory
11-2. Analysis parameters
11-3. Live load arrangements
11-4. Redistribution of moment
11-5. Reinforcement requirements
11-6. Typical continuous beam details
11-7. Flexure design considerations
11-8. Simplified analysis for uniform loads
11-9. Moment and shear coefficients for continuous beams

CONTINUOUS SLABS
11-10. Continuous one-way slab
11-11. Restrained two-way slabs

EXAMPLES XI

Chapter 12 TORSION

12-1. General
12-2. Effect of torsion: Provision of reinforcement
12-3. Code provisions
12-4. General cases of torsion

EXAMPLES XII

Chapter 13 STAIRS

13-1. Stair slabs
13-2. Classification of stairs
13-3. Design requirements for stair
13-4. Reducing the span
13-5. Tread-riser staircase
13-6. Closure

EXAMPLES XIII

Chapter 14 LOAD CALCULATIONS - 1

14-1. Introductory
14-2. Loads on slabs
14-3. Loading on beams from one-way slabs
14-4. Wall loads and self weight of beams
14-5. Loading on beams from two-way slabs
14-6. Unit loads

EXAMPLES XIV
Chapter 15 SIMPLE DESIGNS
15-1. Introductory
15-2. Design S.F. diagram
15-3. Loads from two-way slabs

Chapter 16 FRAMED BEAMS
16-1. Structural joints
16-2. Fixed, cantilever and framed beams
16-3. Analysis and design of the framed beams
16-4. Single span portal frame
16-5. Substitute frame

Chapter 17 COLUMNS
17-1. Introductory
17-2. Braced and Unbraced columns
17-3. No–Sway and Sway columns
17-4. Tied, Spiral and Composite columns
17-5. Short and Long columns
17-6. Reinforcement requirements
17-7. Minimum eccentricity
17-8. Assumptions made for design

SHORT COLUMNS
17-9. Axially loaded tied columns
17-10. Axially loaded spiral columns
17-11. Short eccentrically loaded columns—uniaxial bending
17-12. Modes of failure in combined axial load and uniaxial bending
17-13. Types of problems
17-14. The interaction diagram
17-15. Stress block parameters when N.A. lies outside the section
17-16. Construction of interaction diagrams
17-17. Pure axial load
17-18. Axial load with uniaxial moment
17-19. Neutral axis (N.A.) lies outside the section
17-20. Neutral axis (N.A.) lies inside the section
17-21. Charts for compression with bending
17-22. Tension with bending
17-23. Use of interaction diagram
17-24. Unsymmetrically reinforced columns with uniaxial eccentricity
17-25. Short eccentrically loaded columns: Biaxial bending

SLENDER COLUMNS
17-26. Slender columns
17-27. Effective length calculations
17-28. Lengths of column
17-29. Design of slender columns
17-30. Design and detailing of a practical column

Chapter 18 DESIGN OF FOUNDATIONS: FUNDAMENTALS
18-1. Introductory
18-2. Classification of foundations
18-3. Types of footings
18-4. R.C.C. footings
18-5. Aspects of soil design
18-6. General soil design considerations
18-7. Footing for eccentrically loaded columns
18-8. General structural design considerations
18-9. Concrete pedestal
18-10. Transfer of load at the base of column

Chapter 19 ISOLATED FOOTINGS
19-1. Introductory
19-2. Wall footings
19-3. Axially loaded pad footing
19-4. Axially loaded sloped footing
19-5. Eccentrically loaded footings
19-6. Fixing up footing dimensions
19-7. Isolated slab and beam type footing
19-8. Resistance to horizontal loads
19-9. Footing for multi-storeyed building columns

Chapter 20 COMBINED FOOTINGS
20-1. Combined footings
20-2. Combined footing for two axially loaded columns
20-3. Strap footings
20-4. Strip footings
20-5. Raft foundation
20-6. Closure

Chapter 21 PILE FOUNDATIONS
21-1. Introductory
21-2. Loads on pile groups
21-3. Soil design of a pile
21-4. Structural design of a pile
21-5. Design of a pile cap

Chapter 22 RETAINING WALLS
22-1. Introductory
22-2. Types of retaining walls
22-3. Earth pressure on walls
22-4. Calculation of earth pressure
22-5. Earth pressure of submerged soil
22-6. Earth pressure due to surcharge
22-7. Drainage of retaining walls
22-8. Stability requirements

CANTILEVER RETAINING WALL
22-9. Preliminary proportioning of cantilever retaining wall
22-10. Design of a cantilever retaining wall
COUNTERFORT RETAINING WALL
22-11. Counterfort wall
22-12. Stability and design procedure

Chapter 23 FORMWORK
23-1. Introductory
23-2. Requirements for good formwork
23-3. Materials for forms
23-4. Choice of formwork
23-5. Loads on formwork
23-6. Permissible stresses for timber
23-7. Design of formwork
23-8. Shuttering for columns
23-9. Shuttering for beam and slab floor
23-10. Practical considerations
23-11. Erection of forms
23-12. Action prior to and during concreting
23-13. Striking of forms

Chapter 24 DETAILING OF REINFORCEMENT
24-1. Introduction
24-2. General informations for drawing
24-3. Drafting
24-4. Columns framing plan and foundation details
24-5. Columns details
24-6. Slabs and beams details
24-7. Closure

Appendix A SHORT QUESTIONS WITH ANSWERS
Appendix B USEFUL TABLES
Reinforced concrete (RC) is a versatile composite and one of the most widely used materials in modern construction. Concrete is a relatively brittle material that is strong under compression but less so in tension. Plain, unreinforced concrete is unsuitable for many structures as it is relatively poor at withstanding stresses induced by vibrations, wind loading, and so on. To increase its overall strength, steel rods, wires, mesh or cables can be embedded in concrete before it sets.