Contents

List of tables xv
List of figures xvii
Preface xxvii
Acknowledgments xxix

1 Introduction 1
 1.1 Overview of the book 1
 1.2 Getting the most out of this book 3
 1.3 Downloading the example datasets and programs 4
 1.4 The GSS dataset 4
 1.4.1 Income 5
 1.4.2 Age 6
 1.4.3 Education 10
 1.4.4 Gender 12
 1.5 The pain datasets 12
 1.6 The optimism datasets 12
 1.7 The school datasets 13
 1.8 The sleep datasets 13

I Continuous predictors 15

2 Continuous predictors: Linear 17
 2.1 Chapter overview 17
 2.2 Simple linear regression 17
 2.2.1 Computing predicted means using the margins command 20
 2.2.2 Graphing predicted means using the marginsplot command 22
 2.3 Multiple regression 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Computing adjusted means using the margins command</td>
<td>26</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Some technical details about adjusted means</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Graphing adjusted means using the marginsplot command</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Checking for nonlinearity graphically</td>
<td>30</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Using scatterplots to check for nonlinearity</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Checking for nonlinearity using residuals</td>
<td>31</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Checking for nonlinearity using locally weighted smoother</td>
<td>33</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Graphing outcome mean at each level of predictor</td>
<td>34</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Summary</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Checking for nonlinearity analytically</td>
<td>37</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Adding power terms</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Using factor variables</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Continuous predictors: Polynomials</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Chapter overview</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Quadratic (squared) terms</td>
<td>45</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Overview</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Examples</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Cubic (third power) terms</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Overview</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Examples</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Fractional polynomial regression</td>
<td>62</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Overview</td>
<td>62</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Example using fractional polynomial regression</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>Main effects with polynomial terms</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>Continuous predictors: Piecewise models</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Chapter overview</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td>Introduction to piecewise regression models</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Piecewise with one known knot</td>
<td>82</td>
</tr>
</tbody>
</table>
Contents

4.3.1 Overview ... 82
4.3.2 Examples using the GSS 83
4.4 Piecewise with two known knots 91
4.4.1 Overview ... 91
4.4.2 Examples using the GSS 91
4.5 Piecewise with one knot and one jump 96
4.5.1 Overview ... 96
4.5.2 Examples using the GSS 97
4.6 Piecewise with two knots and two jumps 102
4.6.1 Overview ... 102
4.6.2 Examples using the GSS 102
4.7 Piecewise with an unknown knot 109
4.8 Piecewise model with multiple unknown knots 113
4.9 Piecewise models and the marginsplot command 120
4.10 Automating graphs of piecewise models 123
4.11 Summary .. 126

5 Continuous by continuous interactions 127
5.1 Chapter overview .. 127
5.2 Linear by linear interactions 127
5.2.1 Overview ... 127
5.2.2 Example using GSS data 132
5.2.3 Interpreting the interaction in terms of age 133
5.2.4 Interpreting the interaction in terms of education 135
5.2.5 Interpreting the interaction in terms of age slope 137
5.2.6 Interpreting the interaction in terms of the educ slope 138
5.3 Linear by quadratic interactions 140
5.3.1 Overview ... 140
5.3.2 Example using GSS data 143
5.4 Summary .. 148
Contents

6 Continuous by continuous by continuous interactions

- 6.1 Chapter overview ... 149
- 6.2 Overview .. 149
- 6.3 Examples using the GSS data 154
 - 6.3.1 A model without a three-way interaction 154
 - 6.3.2 A three-way interaction model 158
- 6.4 Summary .. 164

II Categorical predictors

7 Categorical predictors

- 7.1 Chapter overview ... 167
- 7.2 Comparing two groups using a t test 168
- 7.3 More groups and more predictors 169
- 7.4 Overview of contrast operators 175
- 7.5 Compare each group against a reference group 176
 - 7.5.1 Selecting a specific contrast 177
 - 7.5.2 Selecting a different reference group 178
 - 7.5.3 Selecting a contrast and reference group 179
- 7.6 Compare each group against the grand mean 179
 - 7.6.1 Selecting a specific contrast 181
- 7.7 Compare adjacent means 182
 - 7.7.1 Reverse adjacent contrasts 185
 - 7.7.2 Selecting a specific contrast 186
- 7.8 Comparing the mean of subsequent or previous levels 187
 - 7.8.1 Comparing the mean of previous levels 191
 - 7.8.2 Selecting a specific contrast 192
- 7.9 Polynomial contrasts 193
- 7.10 Custom contrasts ... 195
- 7.11 Weighted contrasts .. 198
- 7.12 Pairwise comparisons 200
9.3 Two by two by three models .. 255
 9.3.1 Simple interactions by depression status 258
 9.3.2 Simple partial interaction by depression status 258
 9.3.3 Simple contrasts .. 260
 9.3.4 Partial interactions 260
9.4 Three by three by three models and beyond 262
 9.4.1 Partial interactions and interaction contrasts 264
 9.4.2 Simple interactions 268
 9.4.3 Simple effects and simple comparisons 271
9.5 Summary ... 272

III Continuous and categorical predictors 273
10 Linear by categorical interactions 275
 10.1 Chapter overview ... 275
 10.2 Linear and two-level categorical: No interaction 275
 10.2.1 Overview .. 275
 10.2.2 Examples using the GSS 278
 10.3 Linear by two-level categorical interactions 283
 10.3.1 Overview .. 283
 10.3.2 Examples using the GSS 285
 10.4 Linear by three-level categorical interactions 290
 10.4.1 Overview .. 290
 10.4.2 Examples using the GSS 293
 10.5 Summary .. 299

11 Polynomial by categorical interactions 301
 11.1 Chapter overview ... 301
 11.2 Quadratic by categorical interactions 301
 11.2.1 Overview .. 302
 11.2.2 Quadratic by two-level categorical 305
 11.2.3 Quadratic by three-level categorical 312
Contents

11.3 Cubic by categorical interactions .. 318
11.4 Summary ... 323

12 Piecewise by categorical interactions ... 325
12.1 Chapter overview .. 325
12.2 One knot and one jump ... 328
 12.2.1 Comparing slopes across gender .. 332
 12.2.2 Comparing slopes across education 333
 12.2.3 Difference in differences of slopes .. 333
 12.2.4 Comparing changes in intercepts .. 334
 12.2.5 Computing and comparing adjusted means 334
 12.2.6 Graphing adjusted means ... 337
12.3 Two knots and two jumps ... 341
 12.3.1 Comparing slopes across gender .. 346
 12.3.2 Comparing slopes across education 347
 12.3.3 Difference in differences of slopes .. 348
 12.3.4 Comparing changes in intercepts by gender 349
 12.3.5 Comparing changes in intercepts by education 350
 12.3.6 Computing and comparing adjusted means 351
 12.3.7 Graphing adjusted means ... 354
12.4 Comparing coding schemes ... 356
 12.4.1 Coding scheme #1 ... 356
 12.4.2 Coding scheme #2 ... 358
 12.4.3 Coding scheme #3 ... 360
 12.4.4 Coding scheme #4 ... 361
 12.4.5 Choosing coding schemes .. 363
12.5 Summary ... 364

13 Continuous by continuous by categorical interactions 365
13.1 Chapter overview .. 365
13.2 Linear by linear by categorical interactions 366
 13.2.1 Fitting separate models for males and females 366
13.2.2 Fitting a combined model for males and females 368
13.2.3 Interpreting the interaction focusing in the age slope 370
13.2.4 Interpreting the interaction focusing on the educ slope . . . 372
13.2.5 Estimating and comparing adjusted means by gender 374
13.3 Linear by quadratic by categorical interactions 376
13.3.1 Fitting separate models for males and females 376
13.3.2 Fitting a common model for males and females 378
13.3.3 Interpreting the interaction . 379
13.3.4 Estimating and comparing adjusted means by gender 380
13.4 Summary . 382
14 Continuous by categorical by categorical interactions 383
14.1 Chapter overview . 383
14.2 Simple effects of gender on the age slope 387
14.3 Simple effects of education on the age slope 388
14.4 Simple contrasts on education for the age slope 389
14.5 Partial interaction on education for the age slope 389
14.6 Summary . 390

IV Beyond ordinary linear regression 391
15 Multilevel models 393
15.1 Chapter overview . 393
15.2 Example 1: Continuous by continuous interaction 394
15.3 Example 2: Continuous by categorical interaction 397
15.4 Example 3: Categorical by continuous interaction 401
15.5 Example 4: Categorical by categorical interaction 404
15.6 Summary . 408

16 Time as a continuous predictor 411
16.1 Chapter overview . 411
16.2 Example 1: Linear effect of time . 412
16.3 Example 2: Linear effect of time by a categorical predictor 416
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4 Example 3: Piecewise modeling of time</td>
<td>421</td>
</tr>
<tr>
<td>16.5 Example 4: Piecewise effects of time by a categorical predictor</td>
<td>426</td>
</tr>
<tr>
<td>16.5.1 Baseline slopes</td>
<td>430</td>
</tr>
<tr>
<td>16.5.2 Change in slopes: Treatment versus baseline</td>
<td>431</td>
</tr>
<tr>
<td>16.5.3 Jump at treatment</td>
<td>432</td>
</tr>
<tr>
<td>16.5.4 Comparisons among groups</td>
<td>433</td>
</tr>
<tr>
<td>16.6 Summary</td>
<td>434</td>
</tr>
<tr>
<td>17 Time as a categorical predictor</td>
<td>437</td>
</tr>
<tr>
<td>17.1 Chapter overview</td>
<td>437</td>
</tr>
<tr>
<td>17.2 Example 1: Time treated as a categorical variable</td>
<td>438</td>
</tr>
<tr>
<td>17.3 Example 2: Time (categorical) by two groups</td>
<td>443</td>
</tr>
<tr>
<td>17.4 Example 3: Time (categorical) by three groups</td>
<td>447</td>
</tr>
<tr>
<td>17.5 Comparing models with different residual covariance structures</td>
<td>452</td>
</tr>
<tr>
<td>17.6 Summary</td>
<td>454</td>
</tr>
<tr>
<td>18 Nonlinear models</td>
<td>455</td>
</tr>
<tr>
<td>18.1 Chapter overview</td>
<td>455</td>
</tr>
<tr>
<td>18.2 Binary logistic regression</td>
<td>456</td>
</tr>
<tr>
<td>18.2.1 A logistic model with one categorical predictor</td>
<td>456</td>
</tr>
<tr>
<td>18.2.2 A logistic model with one continuous predictor</td>
<td>463</td>
</tr>
<tr>
<td>18.2.3 A logistic model with covariates</td>
<td>465</td>
</tr>
<tr>
<td>18.3 Multinomial logistic regression</td>
<td>470</td>
</tr>
<tr>
<td>18.4 Ordinal logistic regression</td>
<td>473</td>
</tr>
<tr>
<td>18.5 Poisson regression</td>
<td>478</td>
</tr>
<tr>
<td>18.6 More applications of nonlinear models</td>
<td>481</td>
</tr>
<tr>
<td>18.6.1 Categorical by categorical interaction</td>
<td>481</td>
</tr>
<tr>
<td>18.6.2 Categorical by continuous interaction</td>
<td>487</td>
</tr>
<tr>
<td>18.6.3 Piecewise modeling</td>
<td>492</td>
</tr>
<tr>
<td>18.7 Summary</td>
<td>498</td>
</tr>
<tr>
<td>19 Complex survey data</td>
<td>499</td>
</tr>
</tbody>
</table>
V Appendices 505
A The margins command 507
 A.1 The predict() and expression() options 507
 A.2 The at() option ... 510
 A.3 Margins with factor variables 513
 A.4 Margins with factor variables and the at() option 517
 A.5 The dydx() and related options 519
B The marginsplot command 523
C The contrast command 535
D The pwcompare command 539
References 545
Author index 549
Subject index 551
(Pages omitted)
Think back to the first time you learned about simple linear regression. You probably learned about the underlying theory of linear regression, the meaning of the regression coefficients, and how to create a graph of the regression line. The graph of the regression line provided a visual representation of the intercept and slope coefficients. Using such a graph, you could see that as the intercept increased, so did the overall height of the regression line, and as the slope increased, so did the tilt of the regression line. Within Stata, the `graph twoway lfit` command can be used to easily visualize the results of a simple linear regression.

Over time we learn about and use fancier and more abstract regression models—models that include covariates, polynomial terms, piecewise terms, categorical predictors, interactions, and nonlinear models such as logistic. Compared with a simple linear regression model, it can be challenging to visualize the results of such models. The utility of these fancier models diminishes if we have greater difficulty interpreting and visualizing the results.

With the introduction of the `marginsplot` command in Stata 12, visualizing the results of a regression model, even complex models, is a snap. As implied by the name, the `marginsplot` command works in tandem with the `margins` command by plotting (graphing) the results computed by the `margins` command. For example, after fitting a linear model, the `margins` command can be used to compute adjusted means as a function of one or more predictors. The `marginsplot` command graphs the adjusted means, allowing you to visually interpret the results.

The `margins` and `marginsplot` commands can be used following nearly all Stata estimation commands (including `regress`, `anova`, `logit`, `ologit`, and `mlogit`). Furthermore, these commands work with continuous linear predictors, categorical predictors, polynomial (power) terms, as well as interactions (for example, two-way interactions, three-way interactions). This book uses the `marginsplot` command not only as an interpretive tool, but also as an instructive tool to help you understand the results of regression models by visualizing them.

Categorical predictors pose special difficulties with respect to interpreting regression models, especially models that involve interactions of categorical predictors. Categorical predictors are traditionally coded using dummy (indicator) coding. Many research questions cannot be answered directly in terms of dummy variables. Furthermore, interactions involving dummy categorical variables can be confusing and even misleading. Stata 12 introduces the `contrast` command, a general-purpose command that can be
The contrast command allows you to easily focus on the comparisons that are of interest to you.

The contrast command works with interactions as well. You can test the simple effect of one predictor at specific levels of another predictor or form interactions that involve comparisons of your choosing. In the parlance of analysis of variance, you can test simple effects, simple contrasts, partial interactions, and interaction contrasts. These kinds of tests allow you to precisely understand and dissect interactions with surgical precision. The contrast command works not only with the regress command, but also with commands such as logit, ologit, mlogit, as well as random-effects models like xtmixed.

As you can see, the scope of the application of the margins, marginsplot, and contrast commands is broad. Likewise, so is the scope of this book. It covers continuous variables (modeled linearly, using polynomials, and piecewise), interactions of continuous variables, categorical predictors, interactions of categorical predictors, as well as interactions of continuous and categorical predictors. The book also illustrates how the margins, marginsplot, and contrast commands can be used to interpret results from multilevel models, models where time is a continuous predictor, models with time as a categorical predictor, nonlinear models (such as logistic regression or ordinal logistic regression), and analyses that involve complex survey data. However, this book does not contain information about the theory of these statistical models, how to perform diagnostics for the models, the formulas for the models, and so forth. The summary section concluding each chapter includes references to books and articles that provide background for the techniques illustrated in the chapter.

My goal for this book is to provide simple and clear examples that illustrate how to interpret and visualize the results of regression models. To that end, I have selected examples that illustrate large effects generally combined with large sample sizes to create patterns of effects that are easy to visualize. Most of the examples are based on real data, but some are based on hypothetical data. In either case, I hope the examples help you understand the results of your regression models so you can interpret and present them with clarity and confidence.

Simi Valley, California
March 2012

Michael N. Mitchell
(Pages omitted)
14 Continuous by categorical by categorical interactions

14.1 Chapter overview

This chapter considers models that involve the interaction of two categorical predictors with a linear continuous predictor. Such models blend ideas from chapter 10 on categorical by continuous interactions and ideas from chapter 8 on categorical by categorical interactions. As we saw in chapter 10, interactions of categorical and continuous predictors describe how the slope of the continuous variable differs as a function of the categorical variable. In chapter 8, we saw models that involve the interaction of two categorical variables. This chapter blends these two modeling techniques by exploring how the slope of the continuous variable varies as a function of the interaction of the two categorical variables.

Let’s consider a hypothetical example of a model with income as the outcome variable. The predictors include gender (a two-level categorical variable), education (treated as a three-level categorical variable), and age (a continuous variable). Income can be modeled as a function of each of the predictors, as well as the interactions of all the predictors. A three-way interaction of age by gender by education would imply that the effect of age interacts with gender by education. One way to visualize such an interaction would be to graph age on the x axis, with separate lines for the levels of education and separate graphs for gender. Figure 14.1 shows such an example, illustrating how the slope of the relationship between income and age varies as a function of education and gender.
Chapter 14 Continuous by categorical by categorical interactions

\[\beta_{1M} = 400 \]
\[\beta_{2M} = 600 \]
\[\beta_{3M} = 1300 \]

\[\beta_{1F} = 150 \]
\[\beta_{2F} = 250 \]
\[\beta_{3F} = 600 \]

The graph can be augmented by a table that shows the age slope broken down by education and gender. Such a table is shown in [14.1]. The age slope shown in each cell of table [14.1] reflects the slope of the relationship between income and age for each of the lines illustrated in figure [14.1]. For example, \(\beta_{3M} \) represents the age slope for male college graduates, and this slope is 1,300.

Table 14.1. The age slope by level of education and gender

<table>
<thead>
<tr>
<th></th>
<th>Non-HS grad</th>
<th>HS grad</th>
<th>CO grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>(\beta_{1M} = 400)</td>
<td>(\beta_{2M} = 600)</td>
<td>(\beta_{3M} = 1300)</td>
</tr>
<tr>
<td>Female</td>
<td>(\beta_{1F} = 150)</td>
<td>(\beta_{2F} = 250)</td>
<td>(\beta_{3F} = 600)</td>
</tr>
</tbody>
</table>

The age by education by gender interaction described in table [14.1] can be understood and dissected like the two by three interactions illustrated in chapter 8. The key difference is that table [14.1] is displaying the slope of the relationship between income and age, and the three-way interaction refers to the way that the slope varies as a function of education and gender.

If there were no three-way interaction of age by gender by education, we would expect (for example) that the gender difference in the age slope would be approximately the

\[\beta_{3M} - \beta_{3F} \]

1. More precisely, how the slope varies as a function of the interaction of age and gender.
same at each level of education. But, consider the differences in the age slopes between females and males at each level of education. This difference is -250 ($150 - 400$) for non–high school graduates, whereas this difference is -350 ($250 - 600$) for high school graduates, and the difference is -700 ($600 - 1300$) for college graduates. The difference in the age slopes between females and males seems to be much larger for college graduates than for high school graduates and non–high school graduates. This pattern of results appears consistent with a three-way interaction of age by education by gender.

Let’s explore this in more detail with an example using the GSS dataset. To focus on the linear effect of age, we will keep those who are 22 to 55 years old.

`. use gss_ivrm
. keep if age>=22 & age<=55
(18936 observations deleted)

In this example, let’s predict income as a function of gender (female), a three-level version of education (educ3), and age. The `regress` command below predicts realrinc from i.female, i.educ3, and c.age (as well as all interactions of the predictors). The variable i.race is also included as a covariate.

`. regress realrinc i.female##i.educ3##c.age i.race, vce(robust) vsquish

Linear regression
Number of obs = 25718
F(13, 25704) = 411.30
Prob > F = 0.0000
R-squared = 0.1839
Root MSE = 23556

| realrinc | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------|-------|-----------|---|------|----------------------|
| 1.female | 1337.125 | 1693.694 | 0.79 | 0.430 | -1982.61 4656.861 |
| educ3 | 550.476 | 1782.192 | 0.31 | 0.757 | -2942.721 4043.673 |
| 2 | -11156.1 | 2618.976 | -4.26 | 0.000 | -16289.44 -6022.756 |
| 3 | 783.0991 | 2021.654 | 0.39 | 0.718 | -3179.457 4745.645 |
| female#educ3 | 7657.907 | 3164.299 | 2.42 | 0.016 | 1455.703 13860.11 |
| 1 2 | 413.8695 | 45.62015 | 9.07 | 0.000 | 324.4515 503.2876 |
| 1 3 | 897.3326 | 77.47101 | 11.58 | 0.000 | 745.481 1049.18 |
| age | | | | | |
| 1 female#c.age | -264.9842 | 50.65695 | -5.23 | 0.000 | -364.2746 -165.6937 |
| 2 | 175.8497 | 54.75054 | 3.21 | 0.001 | 68.53584 283.1636 |
| 3 | 897.3326 | 77.47101 | 11.58 | 0.000 | 745.481 1049.18 |
| educ3#c.age | | | | | |
| 1 | | | | | |
| 2 | -80.30545 | 60.94575 | -1.32 | 0.188 | -199.7625 99.15165 |
| 3 | -414.6562 | 93.26714 | -4.45 | 0.000 | -597.465 -231.8473 |
| race | | | | | |
| 2 | -2935.138 | 273.3294 | -10.74 | 0.000 | -3470.879 -2399.397 |
| 3 | 185.3956 | 956.3338 | 0.19 | 0.846 | -1689.081 2059.872 |
| _cons | 2691.23 | 1495.778 | 1.80 | 0.072 | -240.5797 5623.039 |
Let’s test the interaction of gender, education, and age using the `contrast` command below. The three-way interaction is significant.

```
. contrast i.female#i.educ3#c.age
Contrasits of marginal linear predictions
Margins : asbalanced

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>P&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>female#educ3#c.age</td>
<td>2</td>
<td>10.17</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>25704</td>
<td></td>
</tr>
</tbody>
</table>
```

To begin the process of interpreting the three-way interaction, let’s create a graph of the adjusted means as a function of age, education, and gender. First, the `margins` command below is used to compute the adjusted means by gender and education for ages 22 and 55 (the output is omitted to save space). Then the `marginsplot` command is used to graph the adjusted means, as shown in figure 14.2.

```
. margins female#educ3, at(age=(22 55))
(output omitted)
. marginsplot, bydimension(female) noci
Variables that uniquely identify margins: age female educ3
```

![Predictive Margins of female#educ3](image)

Figure 14.2. Fitted values of income as a function of age, education, and gender
14.2 Simple effects of gender on the age slope

The graph in figure 14.2 illustrates how the age slope varies as a function of gender and education. Let’s compute the age slope for each of the lines shown in this graph. The margins command is used with the dydx(age) and over() options to compute the age slopes separately for each combination of gender and education.

\[
\begin{align*}
\text{. margins, dydx(age) over(female educ3)} \\
\text{Average marginal effects} & \quad \text{Number of obs} = \quad 25718 \\
\text{Model VCE} : & \quad \text{Robust} \\
\text{Expression} : & \quad \text{Linear prediction, predict()} \\
\text{dy/dx w.r.t.} : & \quad \text{age} \\
\text{over} : & \quad \text{female educ3} \\
\end{align*}
\]

\[
\begin{array}{|r|c|c|c|c|c|}
\hline
\text{age} & \text{dy/dx} & \text{Std. Err.} & \text{z} & \text{P>|z|} & \text{[95\% Conf. Interval]} \\
\hline
\text{female#educ3} & & & & & \\
0 1 & 413.8695 & 45.62015 & 9.07 & 0.000 & 324.4557 – 503.2834 \\
0 2 & 589.7192 & 30.37993 & 19.41 & 0.000 & 530.1757 – 649.2628 \\
0 3 & 1311.202 & 62.88374 & 20.85 & 0.000 & 1187.952 – 1434.452 \\
1 1 & 148.8854 & 22.09037 & 6.74 & 0.000 & 105.589 – 192.1817 \\
1 2 & 244.4296 & 15.25412 & 16.02 & 0.000 & 214.5321 – 274.3272 \\
1 3 & 631.5618 & 46.90854 & 13.46 & 0.000 & 539.6227 – 723.5008 \\
\hline
\end{array}
\]

Let’s reformat the output of the margins command to emphasize how the age slope varies as a function of the interaction of gender and education (see table 14.2). Each cell of table 14.2 shows the age slope for the particular combination of gender and education. For example, the age slope for males with a college degree is 1,311.20 and is labeled as \(\beta_3\).

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Non-HS grad} & \text{HS grad} & \text{CO grad} \\
\hline
\text{Male} & \beta_1 = 413.87 & \beta_2 = 589.72 & \beta_3 = 1,311.20 \\
\text{Female} & \beta_1 = 148.89 & \beta_2 = 244.43 & \beta_3 = 631.56 \\
\hline
\end{array}
\]

We can dissect the three-way interaction illustrated in table 14.2 using the techniques from section 8.3 on two by three models. Specifically, we can use simple effects analysis, simple contrasts, and partial interactions.

14.2 Simple effects of gender on the age slope

We can use the contrast command to test the simple effect of gender on the age slope. This is illustrated below.
Chapter 14 Continuous by categorical by categorical interactions

. contrast female#c.age@educ3, nowald pveffects
Contrasts of marginal linear predictions
Margins : asbalanced

| | Contrast | Std. Err. | t | P>|t| |
|----------------|----------|-----------|------|-----|
| female@educ3#c.age | | | | |
| (1 vs base) 1 | -264.9842 | 50.65695 | -5.23| 0.000|
| (1 vs base) 2 | -345.2896 | 33.98931 | -10.16| 0.000|
| (1 vs base) 3 | -679.6404 | 78.4498 | -8.66| 0.000|

Each of these tests represents the comparison of females versus males in terms of the age slope. The first test compares the age slope for females versus males among non–high school graduates. Referring to table 14.2, this test compares β_1^F with β_1^M. The difference in these age slopes is -264.98 (148.89 – 413.87), and this difference is significant. The age slope for females who did not graduate high school is 264.98 units smaller than the age slope for males who did not graduate high school. The second test is similar to the first, except the comparison is made among high school graduates, comparing β_2^F with β_2^M from table 14.2. This test is also significant. The third test compares the age slope between females and males among college graduates (that is, comparing β_3^F with β_3^M). This test is also significant. In summary, the comparison of the age slope for females versus males is significant at each level of education.

14.3 Simple effects of education on the age slope

We can also look at the simple effects of education on the age slope at each level of gender. This test is performed using the contrast command below.

. contrast educ3#c.age@female
Contrasts of marginal linear predictions
Margins : asbalanced

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>educ3@female#c.age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>70.96</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>43.37</td>
<td>0.0000</td>
</tr>
<tr>
<td>Joint</td>
<td>4</td>
<td>57.21</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>25704</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first test compares the age slope among the three levels of education for males. Referring to table 14.2, this tests the following null hypothesis.

$H_0: \beta_{1M} = \beta_{2M} = \beta_{3M}$

This test is significant. The age slope significantly differs as a function of education among males.
14.5 Partial interaction on education for the age slope

The second test is like the first test, except that the comparisons are made for females. This tests the following null hypothesis.

\[H_0: \beta_{1F} = \beta_{2F} = \beta_{3F} \]

This test is also significant. Among females, the age slope significantly differs among the three levels of education.

14.4 Simple contrasts on education for the age slope

We can further dissect the simple effects tested above by applying contrast coefficients to the education factor. For example, say that we used the ar. contrast operator to form reverse adjacent group comparisons. This would yield comparisons of group 2 versus 1 (high school graduates with non–high school graduates) and group 3 versus 2 (college graduates with high school graduates). Applying this contrast operator yields simple contrasts on education at each level of gender, as shown below.

```
. contrast ar.educ3#c.age@female, nowald pveffects
Contrasts of marginal linear predictions
Margins : asbalanced

| Contrast          | Std. Err. | t     | P>|t| |
|-------------------|-----------|-------|------|
| educ3@female#c.age |           |       |      |
| (2 vs 1) 0        | 175.8497  | 54.7504| 3.21 | 0.001|
| (2 vs 1) 1        | 95.54426  | 26.83611| 3.56 | 0.000|
| (3 vs 2) 0        | 721.4829  | 69.74939| 10.34 | 0.000|
| (3 vs 2) 1        | 387.1322  | 49.38976| 7.84 | 0.000|
```

The first test compares the age slope for male high school graduates with the age slope for males who did not graduate high school. In terms of table 14.2, this is the comparison of \(\beta_{2M} \) with \(\beta_{1M} \). The difference in these age slopes is 175.85 and is significant. The second test is the same as the first test, except the comparison is made for females, comparing \(\beta_{2F} \) with \(\beta_{1F} \). The difference is 95.54 and is significant. The third and fourth tests compare college graduates with high school graduates. The third test forms this comparison among males and is significant, and the fourth test forms this comparison among females and is also significant.

14.5 Partial interaction on education for the age slope

The three-way interaction can be dissected by forming contrasts on the three-level categorical variable. Say that we use reverse adjacent group comparisons on education, which compares high school graduates with non–high school graduates and college graduates with high school graduates. We can interact that contrast with gender and age, as shown in the margins command below.
abstract. Michael Mitchell’s Interpreting and Visualizing Regression Models Using Stata is a clear treatment of how to carefully present results from model-fitting in a wide variety of settings. It is a boon to anyone who has to present the tangible meaning of a complex model in a clear fashion, regardless of the audience. As an example, many experienced researchers start to squirm when asked to give a simple explanation of the practical meaning of interactions in nonlinear models such as logistic regression. The techniques presented in Mitchell’s book make answering those questions easy. Michael Mitchell’s Interpreting and Visualizing Regression Models Using Stata is a clear treatment of how to carefully present results from model-fitting in a wide variety of settings. It is a boon to anyone who has to present the tangible meaning of a complex model in a clear fashion, regardless of the audience. As an example, many experienced researchers start to squirm when asked to give a simple explanation of the practical meaning of interactions in nonlinear models such as logistic regression. The techniques presented in Mitchell's book make answering those questions easy. The overa